
MarkLogic Toolkits for Office® Lab
Prerequisites: MarkLogic Server installed, CQ configured and available for querying

Creating an MS Office Document from MarkLogic
 Understanding the XQuery APIs

 Creating Word Documents

 Creating Excel Workbooks

TOPIC

Understanding the XQuery APIs

The XQuery APIs that accompany each toolkit are provided to assist you in creating new Office

documents as well as updating existing, extracted Office documents in MarkLogic Server. In this unit,

we’ll be generating documents using the APIs. But before we dive into the XQuery, we should

familiarize ourselves a little bit with the XML formats these APIs work with.

The Office document format is named Office Open XML, or concisely, Open XML. This is a bit

misleading, as Open XML is not just one format, but 4.

 WordprocessingML is the format for Word documents

 SpreadsheetML is the format for Excel workbooks

 PresentationML is the format used by PowerPoint for presentations

 DrawingML is used for shapes and art and can be found sprinkled and used throughout all the

above.

The Office applications are created and maintained by 3 different teams within Microsoft, so

unfortunately you won’t find many common XML elements used across the formats.

When working with these formats, it’s also important to remember that the Word, Excel, and

PowerPoint applications are now producers and consumers of XML. But the XML required to generate a

well formed and valid Office document often requires much less XML than the XML that will be

generated if you were to save the same document in Office.

Keep all this in mind when we review the XQuery API documentation. While each function is listed, and

detailed, the functionality of each API, as well as any additional details provided in the documentation, is

due to the complexity of each format in relation to the types of things developers want to be able to do

when working with these formats.

Understanding the components of an unzipped .docx, .xlsx, and .pptx can be very useful when writing

queries in MarkLogic to generate new Office content as well as search and reuse existing Office content.

Open XML 101

We know that a .docx, .xlsx, and .pptx are just zip files containing interrelated XML parts. Each is

required to have at minimum, 3 parts.

 [Content_Types].xml - A dictionary of content types for all the other parts inside the package

 _rels/.rels - The main relationships file, tying the various parts of the package together

 document.xml (Word), workbook.xml(Excel), presentation.xml (PowerPoint) - The main document part

The main document part however, may not be the main content part, and to be useful, a document

requires content. So while you may construct something that will open in Office using just those 3 parts,

you’ll want to know the minimum XML files required, the main document part and main content part for

each format. When introducing, the main content part however, you’ll introduce new dependencies, as

such, you’ll then require more related XML parts. Let’s look at each format in detail.

Filenames listed below include path within respective Office zip package.

WordprocessingML

Creating a document using just the minimum 3 required parts, Word will open with an empty document

ready to be authored. This is because in Word, the main document part and main content part are the

same.

Minimum XML parts required for document that includes content:3

 [Content_Types].xml

 rels/.rels

 document.xml – main document part and main content part are the same

SpreadsheetML

Creating a workbook using just the minimum 3 required parts, Excel will open, but there will be no

worksheets in the workbook. The Excel application opens and appears empty.

Minimum XML parts required for workbook that includes content: 5

 [Content_Types].xml

 _rels/.rels

 _rels/workbook.xml.rels – relates workbook to sheets

 xl/workbook.xml – main document part

 xl/worksheets/sheet#.xml (where # = 1,2,3,…n) – main content part

PresentationML

Creating a presentation using just the minimum 3 required parts, PowerPoint will open, but there will be

no slides in the presentation. The PowerPoint application opens and appears empty.

Minimum XML parts required for presentation that includes content: 11

 [Content_Types].xml

 rels/.rels

 ppt/presentation.xml – main document part

 ppt/_rels/presentation.xml.rels –relates presentation to slides

 ppt/slides/slide#.xml (where # = 1,2,3,…n) – main content part

o a slide is a container for shapes, stored in a shape tree

 ppt/slides/_rels/slide#.xml.rels – relates slide#.xml to slideLayout#.xml

 ppt/slideLayouts/slideLayout#.xml

o another shape tree that combines with the shape tree within the slide and slideMaster

to create the content within a slide

 ppt/slideLayouts/_rels/slideLayouts#.xml.rels –relates slideLayout to slideMaster

 ppt/slideMaster/slideMaster#.xml

o another shape tree which forms the root of the elements which make up a slide

 ppt/slideMaster/_rels/slideMaster#.xml.rels –relates slideMaster to slideLayout and theme

 ppt/theme/theme.xml

Reminder: Listed above are the minimum files required for generating these documents using their

respective XML formats. However, when you click ” Save” in Office to save a document of similar

content, the number of XML files generated for each format is greater.

The naming of the package files used above and paths you’ll see for XML files from extracted Office

documents reflects what the Office formats save to as natively within their respective zip packages. The

Open XML formats do allow you to create zip packages for Office documents that use your own paths

and names for files, so long as the XML is well-formed and valid (You could for example, create a Word

document with document.xml renamed as foo.xml in a directory named “bar” you’d just update

[Content_Types].xml and .rels accordingly). But just know that when you open your document in

Office, the moment you click “Save”, your paths and naming will be stored to Office defaults in the

respective Office zip package.

The XQuery APIs will jumpstart your development, and also provide guidance towards how Office

documents are constructed. This is useful as at some point you may find yourself digging deeper into

the XML for a particular format, and with a basic understanding of how a .docx, .xlsx, and .pptx are

constructed from interrelated XML files, and the basic structure of the main part in those files that

contains the content you care about, you’ll be well on your way to achieving your goals.

Let’s dig in!

WALKTHROUGH

Exercise 1: View the documentation

1. In your favorite browser, open the following from your Toolkits
a. MarkLogic-Toolkit-for-Word-1.2-2\docs\xquery-apidoc\ word-processing-ml-

support.html
b. MarkLogic-Toolkit-for-Excel-1.0-3\docs\xquery-apidoc\ spreadsheet-ml-support.html

2. Examine the WordProcessingML Support documentation
3. Look at the function ooxml:document() and it’s example

a. The main body of content in Word is document.xml. This function creates that part
b. In the example we see function ooxml:create-paragraph() take a look at its definition
c. Examine the ooxml:paragraph() definition and its example

 In Word, a document consists of block-level elements and Inline elements. block-level content provides
the main structure of the document and contains inline-content. Examples of block-level content are
<w:p> (paragraphs) and <w:tbl> (tables). Many Word documents consist of a series of paragraphs.
Paragraphs are composed of runs (<w:r>) of text (<w:t>) and can include images as well as tables.

d. Look at the function ooxml:create-simple-docx()
e. Look at the function ooxml:docx-package()
f. Look at the function ooxml:package()

We can use the API to create our content. We can then either pass it on to the ooxml:create-simple-
docx() function which will construct a .docx consisting of the 3 minimum parts for us. If we wish to
construct a more complicated document, the API provides constructor functions for the other .docx
parts, or we could construct them on our own. We can then pass these XML parts to ooxml:docx-
package() to zip them up and construct our binary .docx for us.

Finally, an alternative to saving our Word document as .docx, is to save it as a package (<pkg:package>).
This is the result of saving your document as XML in Word and is called OPC (The Open Packaging
Convention). The benefit of using this function includes having all our parts in a single document,
eliminating the need to write queries that have to join disparate, extracted parts, as well as the format
required by our JavaScript API function MLA.insertWordOpenXML().

Constructing a Word document on the server using ooxml:package(), this document can be inserted into
any active Word document at the current cursor position using MLA.insertWordOpenXML(). The
content will be serialized into the document.xml being authored. Any required styles, themes, etc. from
other package parts, will be appended to the stylex.xml, themes.xml, etc. in the document being
authored. The combination of these functions provide us a powerful mechanism for searching, reusing,
and generating content into active Word documents.

Note: Word and PowerPoint can both serialize into the OPC format and likewise open documents in OPC
format. Word allows us to inject OPC format documents into Word documents actively being authored,
PowerPoint however does not. Excel has no support for OPC, so you can’t save as OPC XML from Excel,
nor open an Excel document in OPC format into Excel.

4. Examine the SpreadsheetML Support documentation
5. Look at the function excel:worksheet() and its Example

a. A Worksheet is the main content part for an Excel document
b. A Worksheet contains rows (excel:row()) , which contain cells (excel:cell())

6. Look at the function excel:create-simple-xlsx and its Example
7. Look at the function excel:xlsx-package() and its Example

Similar to Word, we find constructor functions to build our main content part as well as the other XML
parts of an Excel workbook. We also find create-simple function that will generate an .xlsx containg our
content and the minimum number of XML parts required to create a .xlsx. We also have excel:xlsx-
package() for creating more complex workbooks.

To generate documents, we’ll need to use the XQuery APIs that accompany each toolkit.

8. Copy MarkLogic-Toolkit-for-Excel-1.0-3\xquery\spreadsheet-ml-support.xqy to
 <ServerRoot>MarkLogic\Modules\MarkLogic\openxml\ spreadsheet-ml-support.xqy

9. Copy MarkLogic-Toolkit-for-Word-1.2-2\xquery\ word-processing-ml-support.xqy to
 <ServerRoot>MarkLogic\Modules\MarkLogic\openxml\word-processing-ml-support.xqy

TOPIC

Creating Word Documents

To review, the main body of content in Word is found in the document.xml part. The body of the

document is composed of block-level an inline elements. Block-level elements provide the main

structure of the document and contain inline-elements. Two of the most frequently used block-level

elements include paragraphs(<w:p>) and tables (<w:tbl>).

The document.xml is combined with other XML parts to create a .docx package.

Another block-level element to consider for document generation is <w:altChunk>. The <w:altChunk>

element provides us a mechanism for importing content that isn’t in WordProcessingML format into our

Word document. The chunk is imported from a file located within the .docx package. Once the .docx is

opened and the document materialized in Word, on save, the document will be transformed completely

to WordProcessingML and the altChunk elements will no longer be present.

<w:altChunk>is meant for import only. It facilitates a onetime conversion by Word of the imported

content into WordProcessingML.

<w:altChunk> can import content with the following format types:

 text/html
o A HTML document.

 text/plain
o A Text document.

 application/xhtml+xml
o A XHTML document.

 application/vnd.openxmlformats-officedocument.wordprocessingml.document.main+xml
o An existing .docx package in binary form. (That's right, we can import other Word

documents.)

We include an example in our walkthrough as anyone considering document generation for Word

documents should understand how <w:altChunk> works within Word.

WALKTHROUGH

The following examples assume you are using Windows. Adjust your paths accordingly when saving and

using documents in the following examples.

Exercise 2: Generating Word Documents

1. Enter the following into CQ

xquery version “1.0-ml”;

import module namespace ooxml= "http://marklogic.com/openxml" at

"/MarkLogic/openxml/word-processing-ml-support.xqy";

let $para1 := ooxml:create-paragraph("Hello, World!")

let $para2 := ooxml:create-paragraph("Welcome to Unit 6!")

let $paras := ($para1, $para2)

return xdmp:save("C:\word1.docx",ooxml:create-simple-

docx(ooxml:document(ooxml:body($paras))))

2. Click XML

3. Open C:\word1.docx

4. Enter the following into CQ

xquery version “1.0-ml”;

import module namespace ooxml= "http://marklogic.com/openxml" at

"/MarkLogic/openxml/word-processing-ml-support.xqy";

let $text := ooxml:text("Hello, ")

let $text2 := ooxml:text("World!")

let $run := ooxml:run(($text,$text2))

let $para := ooxml:paragraph($run)

let $body := ooxml:body($para)

let $document := ooxml:document($body)

return xdmp:save("C:\word2.docx",ooxml:create-simple-docx($document))

5. Click XML

6. Open the file C:\word2.docx

7. Enter the following into CQ

xquery version “1.0-ml”;

import module namespace ooxml= "http://marklogic.com/openxml" at

"/MarkLogic/openxml/word-processing-ml-support.xqy";

let $styles := ooxml:list-paragraph-property("1")

let $para1 := ooxml:paragraph((ooxml:run(ooxml:text("MarkLogic

Toolkits for:"))))

let $para2 := ooxml:paragraph((ooxml:run(ooxml:text("Word"))),$styles)

let $para3 :=

ooxml:paragraph((ooxml:run(ooxml:text("Excel"))),$styles)

let $para4 :=

ooxml:paragraph((ooxml:run(ooxml:text("PowerPoint"))),$styles)

let $paras := ($para1, $para2, $para3, $para4)

return xdmp:save("C:\word3.docx",ooxml:create-simple-

docx(ooxml:document(ooxml:body($paras))))

8. Click XML

9. Open C:\word3.docx

10. Enter the following into CQ

xquery version "1.0-ml";

import module namespace ooxml= "http://marklogic.com/openxml" at

"/MarkLogic/openxml/word-processing-ml-support.xqy";

let $content-types:= ooxml:simple-content-types()

let $rels := ooxml:package-rels()

let $para := ooxml:create-paragraph("Four score and seven years ago

our fathers brought forth, upon this continent, a new nation,

conceived in Liberty, and dedicated to the proposition that all men

are created equal.")

let $document := ooxml:document(ooxml:body($para))

let $package := ooxml:docx-package($content-types, $rels, $document)

return xdmp:save("C:\word4.docx", $package)

11. Click XML

12. Open C:\word4.docx

Finally, we’ll create a document using <w:altChunk> . Our document will import a wiki entry, a text file,
and a .docx.

13. Copy word\import.txt to C:\import.txt on your file system
14. Load word\import.docx to the Documents database

In CQ with Toolkits selected as content source (adjust path to file accordingly):

xquery version “1.0-ml”;

let $filename := "/import.docx"

return xdmp:document-load("C:\documents\unit6\import.docx",

 <options xmlns="xdmp:document-load">

 <uri>{$filename}</uri>

 </options>)

15. Create a file C:\Program Files\MarkLogic\Docs\altChunk.xqy
16. Open altChunk.xqy and enter the following

a. Adjust path for import.txt accordingly
b. If you don’t have wifi access, you won’t be able to import the wiki entry

xquery version "1.0-ml";

declare namespace gso = "generate-simple-ooxml-alt";

declare namespace html ="http://www.w3.org/1999/xhtml";

declare function gso:generate-simple-ooxml-alt(

 $content-types as node(),

 $rels as node(),

 $document as node(),

 $documentxmlrels as node(),

 $importedhtml as node(),

 $txt as node(),

 $docx as node()

) as binary()

{

let $manifest := <parts xmlns="xdmp:zip">

 <part>[Content_Types].xml</part>

 <part>_rels/.rels</part>

 <part>word/document.xml</part>

 <part>word/_rels/document.xml.rels</part>

 <part>word/import.htm</part>

 <part>word/import.txt</part>

 <part>word/import.docx</part>

 </parts>

let $parts := ($content-types, $rels, $document, $documentxmlrels,

$importedhtml, $txt, $docx)

 return

 xdmp:zip-create($manifest, $parts)

};

let $content-types :=

 <Types xmlns="http://schemas.openxmlformats.org/package/2006/content-

types">

 <Default Extension="rels" ContentType="application/vnd.openxmlformats-

package.relationships+xml"/>

 <Default Extension="xml" ContentType="application/xml" />

 <Override PartName="/word/document.xml"

ContentType="application/vnd.openxmlformats-

officedocument.wordprocessingml.document.main+xml" />

 <Default Extension="htm" ContentType="application/xhtml+xml"/>

 <Default Extension="txt" ContentType="text/plain"/>

 <Default Extension="docx"

ContentType="application/vnd.openxmlformats-

officedocument.wordprocessingml.document.main+xml"/>

 </Types>

let $rels :=

 <Relationships

xmlns="http://schemas.openxmlformats.org/package/2006/relationships">

 <Relationship Id="rId1"

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/off

iceDocument" Target="word/document.xml"/>

 </Relationships>

let $document :=

 <w:document

xmlns:w="http://schemas.openxmlformats.org/wordprocessingml/2006/main"

xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships"

>

 <w:body>

 <w:altChunk r:id="altChunk1" />

 <w:altChunk r:id="altChunk2" />

 <w:altChunk r:id="altChunk3" />

 <w:p><w:r><w:t>Coolest document ever!</w:t></w:r></w:p>

 </w:body>

 </w:document>

let $documentxmlrels :=

<Relationships

xmlns="http://schemas.openxmlformats.org/package/2006/relationships">

<Relationship Id="altChunk1" TargetMode="Internal"

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/aFC

hunk" Target="import.htm" />

<Relationship Id="altChunk2" TargetMode="Internal"

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/aFC

hunk" Target="import.txt" />

<Relationship Id="altChunk3" TargetMode="Internal"

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/aFC

hunk" Target="import.docx" />

</Relationships>

let $docx := fn:doc("/import.docx")

let $txt := xdmp:document-get("C:\documents\unit6\import.txt")

let $html := <html><body>

 <h1>MarkLogic</h1>{

xdmp:tidy(

xdmp:http-get("http://en.wikipedia.org/wiki/Mark_Logic",<options

xmlns="xdmp:document-get">

 <repair>full</repair>

 </options>)//*:div[@id="bodyContent"]//*:p[2]

)[2]}

</body></html>

let $package := gso:generate-simple-ooxml-alt($content-types, $rels,

$document,$documentxmlrels, $html,$txt/text(), $docx)

let $filename := "hello-world.docx"

let $disposition := concat("attachment; filename=""",$filename,"""")

let $x := xdmp:add-response-header("Content-Disposition", $disposition)

let $x:= xdmp:set-response-content-type("application/vnd.openxmlformats-

officedocument.wordprocessingml.document")

 return

 $package

17. In IE navigate to http://localhost:8000/altChunk.xqy
18. When prompted, choose to open the document in Word

Given our understanding of WordProcessingML we used <w:altChunk> to import a .docx saved in
MarkLogic, a .txt file on the local filesystem, and the MarkLogic web page from Wikipedia into a brand
new .docx document that included our own constructed paragraph.

Constructing our .docx, we created our own [Content_Types].xml to include the file types for the .docx,
.txt, and XHTML parts. We related these to the main content part document.xml by creating our own
document.xml.rels file to include these relationships. Finally, we created our own function to zip up the
document parts for us so we could deliver the final .docx package. It was that simple.

http://localhost:8000/altChunk.xqy

The Toolkit APIs are intended to jumpstart development with WordProcessingML and while they include
a lot of functionality, are not comprehensive. Depending on your goals you may have to dig deeper into
the format and may end up writing your own functions to enable the functionality you require.

TOPIC

Creating Excel Workbooks

After reading Office Open XML 101 and reviewing the SpreadsheetML API, we have an idea of how to

construct Word documents on the Server. Now we’ll put that into action.

To review, the main body of content in Excel is found in the sheet#.xml part, where # is the number of

the sheet in the workbook. The main document part is workbook.xml, which contains references to the

worksheets for the workbook and is related to them through relationships files (.rels, workbook.xml.rels,

etc.)

The sheet#.xml is combined with other XML parts to create a .xlsx package.

The body of content for a worksheet is found in the <sheetData> element within sheet#.xml.

<sheetData> contains rows (<row>), which contains cells (<c>).

Additionally, something very useful in Excel is the application of Named Ranges to identify a contiguous

selection of rows and cells. In SpreadsheetML, this is done through use of the table element (<table>).

(<table>) elements may have an optional child (<autofilter>) element. These application of these

elements to our .xlsx package manifest themselves for the workbook in Excel as a selectable range in a

dropdown list of named ranges for the workbook and as a header filter selection for columns included in

the named range respectively.

WALKTHROUGH

Exercise 3: Generating Excel Workbooks

1. Enter the following into CQ

xquery version "1.0-ml";

import module namespace excel= "http://marklogic.com/openxml/excel"

 at "/MarkLogic/openxml/spreadsheet-ml-support.xqy";

let $cells := ((excel:cell("A1",1000),

 excel:cell("B1",2000),

 excel:cell("C1",3000)))

let $row := excel:row($cells)

return xdmp:save("C:\excel1.xlsx",excel:create-simple-

xlsx(excel:worksheet($row)))

2. Click XML

3. Open C:\excel1.xlsx

4. Enter the following into CQ:

xquery version "1.0-ml";

import module namespace excel= "http://marklogic.com/openxml/excel"

 at "/MarkLogic/openxml/spreadsheet-ml-support.xqy";

let $cells := ((excel:cell("A1",1),

 excel:cell("B1",2),

 excel:cell("C1",3)))

let $row := excel:row($cells)

let $colwidths := excel:column-width((25,25,25))

let $worksheet := excel:worksheet($row,$colwidths)

let $package := excel:create-simple-xlsx($worksheet)

return xdmp:save("C:\excel2.xlsx",$package)

5. Click XML

6. Open C:\excel2.xlsx

7. Enter the following into CQ:

xquery version "1.0-ml";

import module namespace excel= "http://marklogic.com/openxml/excel"

 at "/MarkLogic/openxml/spreadsheet-ml-support.xqy";

let $cells := ((excel:cell("A1",1000),

 excel:cell("B1",2000),

 excel:cell("C1",3000)))

let $row := excel:row($cells)

let $worksheets := excel:worksheet($row)

let $ws-count := fn:count($worksheets)

let $content-types := excel:content-types($ws-count,0)

let $workbook := excel:workbook($ws-count)

let $rels := excel:package-rels()

let $workbookrels := excel:workbook-rels($ws-count)

let $package := excel:xlsx-package($content-types, $workbook, $rels,

$workbookrels, $worksheets)

return xdmp:save("C:\excel3.xlsx",$package)

8. Click XML

9. Open C:\excel3.xlsx

10. Enter the following into CQ:

xquery version "1.0-ml";

import module namespace excel= "http://marklogic.com/openxml/excel"

 at "/MarkLogic/openxml/spreadsheet-ml-support.xqy";

let $cells1 := ((excel:cell("A1","Heading1"),

 excel:cell("B1","Heading2"),

 excel:cell("C1","Heading3")))

let $row1 := excel:row($cells1)

let $cells2 := ((excel:cell("A2","Value1"),

 excel:cell("B2","Value2"),

 excel:cell("C2","Value3")))

let $row2 := excel:row($cells2)

let $cells3 := ((excel:cell("A3","Value11"),

 excel:cell("B3","Value22"),

 excel:cell("C3","Value33")))

let $row3 := excel:row($cells2)

let $colwidths := excel:column-width((25,25,25))

let $worksheets := excel:worksheet(($row1,$row2, $row3),$colwidths,1)

let $ws-count := fn:count($worksheets)

let $content-types := excel:content-types($ws-count,1)

let $workbook := excel:workbook($ws-count)

let $rels := excel:package-rels()

let $workbookrels := excel:workbook-rels($ws-count)

let $worksheetrels := excel:worksheet-rels(1,1)

let $table :=

excel:table(1,"A1:C2",("Heading1","Heading2","Heading3"),xs:boolean("t

rue"), xs:boolean("true"))

let $package := excel:xlsx-package($content-types, $workbook, $rels,

$workbookrels, $worksheets, $worksheetrels, $table)

return ($table, xdmp:save("C:\excel4.xlsx",$package))

11. Click XML

12. Open C:\excel4.xlsx

13. Click on the down arrow next to A1 in the upper left to view our named range “Table1” and

select it.

14. Next click any down arrow next to any of our headings to reveal the filter list.

If you uncheck any item in the dropdown filter and click “OK”, the row containing the unchecked value is

then made invisible in Excel as the filter is applied to the entire range. If we were to create a separate

named range for each column, then the filter would apply only to values within that column.

Note: Named ranges added to the workbook are named by count (“Table1”,”Table2”, “Table3”, etc.).

This is a function of the API, and not Excel. But now that you know what functions to look at, you can

change that depending on your requirements.

R1C1 vs A1 notation

There are 2 ways to identify a cell in Excel. One is by using A1 notation, where a letter is used for the

column identifier, immediately followed by a number which indicates the row position for the same cell.

A1 notation is what Excel uses by default within each worksheet for identifying cells.

R1C1 notation refers to the row number, followed by a column number. An example of this notation is:

R2C2 (identifies cell at row 2 column 2).

In the above examples, we explicitly defined our cells for simplicity. A more likely scenario would be to

dynamically generate our cell column and row position numbers from within loops or position of our

query results. We can pass a row index and a column index to the excel:r1c1-to-a1()function

and have it generate A1 notation for us.

Sometimes your query may fetch rows.

15. Enter the following in CQ and evaluate.

xquery version "1.0-ml";

import module namespace excel= "http://marklogic.com/openxml/excel"

 at "/MarkLogic/openxml/spreadsheet-ml-support.xqy";

declare namespace ms =

"http://schemas.openxmlformats.org/spreadsheetml/2006/main";

let $rows:= for $j in 1 to 25

 return excel:row(

 for $i in 1 to 100

 return

 excel:cell(

 excel:r1c1-to-a1($j,$i),

 xdmp:random(5000)

)

)

return xdmp:save("C:\excel5.xlsx",

 excel:create-simple-xlsx(excel:worksheet($rows)))

Other times you may be starting with columns.

16. Enter the following in CQ and evaluate

xquery version "1.0-ml";

import module namespace excel= "http://marklogic.com/openxml/excel"

 at "/MarkLogic/openxml/spreadsheet-ml-support.xqy";

declare namespace ms =

"http://schemas.openxmlformats.org/spreadsheetml/2006/main";

let $columns := for $i in 1 to 50

 let $cells:= for $j in 1 to 50

 return excel:cell(

 excel:r1c1-to-a1($j,$i),

 xdmp:random(5000))

 return <column>{$cells}</column>

let $rows := for $i in 1 to fn:count($columns)

 return excel:row($columns/ms:c[$i])

return xdmp:save("C:\excel6.xlsx",

 excel:create-simple-xlsx(excel:worksheet($rows)))

17. Open excel5.xlsx and excel6.xlsx to view the results

Conclusion
To learn more about the Toolkits for Word, Excel, and PowerPoint, visit us at:

http://developer.marklogic.com

http://developer.marklogic.com/

