MarkLogic ToolKits for Office® Lab

Prerequisites: MarkLogic Server installed, CQ configured and available for querying

Creating an MS Office Document from MarkLogic
e Understanding the XQuery APIs
e Creating Word Documents
e Creating Excel Workbooks

TOPIC

Understanding the XQuery APlIs

The XQuery APIs that accompany each toolkit are provided to assist you in creating new Office
documents as well as updating existing, extracted Office documents in MarkLogic Server. In this unit,
we’ll be generating documents using the APIs. But before we dive into the XQuery, we should
familiarize ourselves a little bit with the XML formats these APIs work with.

The Office document format is named Office Open XML, or concisely, Open XML. This is a bit
misleading, as Open XML is not just one format, but 4.

e WordprocessingML is the format for Word documents

e SpreadsheetML is the format for Excel workbooks

e PresentationML is the format used by PowerPoint for presentations

e DrawingML is used for shapes and art and can be found sprinkled and used throughout all the
above.

The Office applications are created and maintained by 3 different teams within Microsoft, so
unfortunately you won’t find many common XML elements used across the formats.

When working with these formats, it’s also important to remember that the Word, Excel, and
PowerPoint applications are now producers and consumers of XML. But the XML required to generate a
well formed and valid Office document often requires much less XML than the XML that will be
generated if you were to save the same document in Office.

Keep all this in mind when we review the XQuery APl documentation. While each function is listed, and
detailed, the functionality of each API, as well as any additional details provided in the documentation, is
due to the complexity of each format in relation to the types of things developers want to be able to do
when working with these formats.

Understanding the components of an unzipped .docx, .xlsx, and .pptx can be very useful when writing
gueries in MarkLogic to generate new Office content as well as search and reuse existing Office content.

Open XML 101

We know that a .docx, .xIsx, and .pptx are just zip files containing interrelated XML parts. Each is
required to have at minimum, 3 parts.

e [Content_Types].xml - A dictionary of content types for all the other parts inside the package
e rels/.rels - The main relationships file, tying the various parts of the package together

e document.xml (Word), workbook.xml(Excel), presentation.xml (PowerPoint) - The main document part

The main document part however, may not be the main content part, and to be useful, a document
requires content. So while you may construct something that will open in Office using just those 3 parts,
you’ll want to know the minimum XML files required, the main document part and main content part for
each format. When introducing, the main content part however, you’ll introduce new dependencies, as
such, you'll then require more related XML parts. Let’s look at each format in detail.

Filenames listed below include path within respective Office zip package.

WordprocessingML

Creating a document using just the minimum 3 required parts, Word will open with an empty document
ready to be authored. This is because in Word, the main document part and main content part are the
same.

Minimum XML parts required for document that includes content:3

e [Content_Types].xml
e rels/.rels
o document.xml — main document part and main content part are the same

SpreadsheetML

Creating a workbook using just the minimum 3 required parts, Excel will open, but there will be no
worksheets in the workbook. The Excel application opens and appears empty.

Minimum XML parts required for workbook that includes content: 5

e [Content_Types].xml

e rels/.rels

e _rels/workbook.xml.rels — relates workbook to sheets

e xl/workbook.xml — main document part

e xl/worksheets/sheet#.xml (where # = 1,2,3,...n) — main content part

PresentationML

Creating a presentation using just the minimum 3 required parts, PowerPoint will open, but there will be
no slides in the presentation. The PowerPoint application opens and appears empty.

Minimum XML parts required for presentation that includes content: 11

e [Content_Types].xml
e rels/.rels
e ppt/presentation.xml — main document part
o ppt/_rels/presentation.xml.rels —relates presentation to slides
e ppt/slides/slide#.xml (where # = 1,2,3,...n) — main content part
o aslide is a container for shapes, stored in a shape tree
o ppt/slides/_rels/slide#.xml.rels — relates slide#.xml to slideLayout#.xml
e ppt/slideLayouts/slideLayout#.xml
o another shape tree that combines with the shape tree within the slide and slideMaster
to create the content within a slide
e ppt/slideLayouts/ rels/slideLayouts#t.xml.rels —relates slideLayout to slideMaster
e ppt/slideMaster/slideMaster#.xml
o another shape tree which forms the root of the elements which make up a slide
o ppt/slideMaster/_rels/slideMaster#.xml.rels —relates slideMaster to slideLayout and theme
e ppt/theme/theme.xml

Reminder: Listed above are the minimum files required for generating these documents using their
respective XML formats. However, when you click ” Save” in Office to save a document of similar
content, the number of XML files generated for each format is greater.

The naming of the package files used above and paths you’ll see for XML files from extracted Office
documents reflects what the Office formats save to as natively within their respective zip packages. The
Open XML formats do allow you to create zip packages for Office documents that use your own paths
and names for files, so long as the XML is well-formed and valid (You could for example, create a Word
document with document.xml renamed as foo.xml in a directory named “bar” you’d just update
[Content_Types].xml and .rels accordingly). But just know that when you open your document in
Office, the moment you click “Save”, your paths and naming will be stored to Office defaults in the
respective Office zip package.

The XQuery APIs will jumpstart your development, and also provide guidance towards how Office
documents are constructed. This is useful as at some point you may find yourself digging deeper into
the XML for a particular format, and with a basic understanding of how a .docx, .xIsx, and .pptx are
constructed from interrelated XML files, and the basic structure of the main part in those files that
contains the content you care about, you’ll be well on your way to achieving your goals.

Let’s dig in!
WALKTHROUGH

Exercise 1: View the documentation
1. Inyour favorite browser, open the following from your Toolkits
a. MarkLogic-Toolkit-for-Word-1.2-2\docs\xquery-apidoc\ word-processing-ml-
support.html
b. MarkLogic-Toolkit-for-Excel-1.0-3\docs\xquery-apidoc\ spreadsheet-ml-support.html

2. Examine the WordProcessingML Support documentation

3. Look at the function ooxml:document() and it’s example
a. The main body of content in Word is document.xml. This function creates that part
b. Inthe example we see function ooxml:create-paragraph() take a look at its definition
c. Examine the ooxml:paragraph() definition and its example

In Word, a document consists of block-level elements and Inline elements. block-level content provides
the main structure of the document and contains inline-content. Examples of block-level content are
<w:p> (paragraphs) and <w:tbl> (tables). Many Word documents consist of a series of paragraphs.
Paragraphs are composed of runs (<w:r>) of text (<w:t>) and can include images as well as tables.

d. Look at the function ooxml:create-simple-docx()
e. Look at the function ooxml:docx-package()
f. Look at the function ooxml:package()

We can use the API to create our content. We can then either pass it on to the ooxml:create-simple-
docx() function which will construct a .docx consisting of the 3 minimum parts for us. If we wish to
construct a more complicated document, the APl provides constructor functions for the other .docx
parts, or we could construct them on our own. We can then pass these XML parts to ooxml:docx-
package() to zip them up and construct our binary .docx for us.

Finally, an alternative to saving our Word document as .docx, is to save it as a package (<pkg:package>).
This is the result of saving your document as XML in Word and is called OPC (The Open Packaging
Convention). The benefit of using this function includes having all our parts in a single document,
eliminating the need to write queries that have to join disparate, extracted parts, as well as the format
required by our JavaScript API function MLA.insertWordOpenXML().

Constructing a Word document on the server using ooxml:package(), this document can be inserted into
any active Word document at the current cursor position using MLA.insertWordOpenXML(). The
content will be serialized into the document.xml being authored. Any required styles, themes, etc. from
other package parts, will be appended to the stylex.xml, themes.xml, etc. in the document being
authored. The combination of these functions provide us a powerful mechanism for searching, reusing,
and generating content into active Word documents.

Note: Word and PowerPoint can both serialize into the OPC format and likewise open documents in OPC
format. Word allows us to inject OPC format documents into Word documents actively being authored,
PowerPoint however does not. Excel has no support for OPC, so you can’t save as OPC XML from Excel,
nor open an Excel document in OPC format into Excel.

4. Examine the SpreadsheetML Support documentation
5. Look at the function excel:worksheet() and its Example
a. A Worksheet is the main content part for an Excel document
b. A Worksheet contains rows (excel:row()) , which contain cells (excel:cell())
6. Look at the function excel:create-simple-xIsx and its Example
7. Look at the function excel:xIsx-package() and its Example

Similar to Word, we find constructor functions to build our main content part as well as the other XML
parts of an Excel workbook. We also find create-simple function that will generate an .xIsx containg our
content and the minimum number of XML parts required to create a .xIsx. We also have excel:xIsx-
package() for creating more complex workbooks.

To generate documents, we’ll need to use the XQuery APIs that accompany each toolkit.

8. Copy MarkLogic-Toolkit-for-Excel-1.0-3\xquery\spreadsheet-ml-support.xqy to
<ServerRoot>MarkLogic\Modules\MarkLogic\openxml\ spreadsheet-ml-support.xqy

9. Copy MarkLogic-Toolkit-for-Word-1.2-2\xquery\ word-processing-ml-support.xqy to
<ServerRoot>MarkLogic\Modules\MarkLogic\openxml\word-processing-ml-support.xqy

TOPIC

Creating Word Documents

To review, the main body of content in Word is found in the document.xml part. The body of the
document is composed of block-level an inline elements. Block-level elements provide the main
structure of the document and contain inline-elements. Two of the most frequently used block-level
elements include paragraphs(<w:p>) and tables (<w:tbl>).

The document.xml is combined with other XML parts to create a .docx package.

Another block-level element to consider for document generation is <w:altChunk>. The <w:altChunk>
element provides us a mechanism for importing content that isn’t in WordProcessingML format into our
Word document. The chunk is imported from a file located within the .docx package. Once the .docx is
opened and the document materialized in Word, on save, the document will be transformed completely
to WordProcessingML and the altChunk elements will no longer be present.

<w:altChunk>is meant for import only. It facilitates a onetime conversion by Word of the imported
content into WordProcessingML.

<w:altChunk> can import content with the following format types:

o text/html
o A HTML document.
o text/plain

o AText document.
¢ application/xhtml+xml
o AXHTML document.
e application/vnd.openxmlformats-officedocument.wordprocessingml.document.main+xml
o An existing .docx package in binary form. (That's right, we can import other Word
documents.)

We include an example in our walkthrough as anyone considering document generation for Word
documents should understand how <w:altChunk> works within Word.

WALKTHROUGH
The following examples assume you are using Windows. Adjust your paths accordingly when saving and
using documents in the following examples.

Exercise 2: Generating Word Documents
1. Enter the following into CQ

xquery version “1.0-ml”;

import module namespace ooxml= "http://marklogic.com/openxml" at
"/MarkLogic/openxml /word-processing-ml-support.xqy";

let Sparal := ooxml:create-paragraph ("Hello, World!")
let Spara2 := ooxml:create-paragraph ("Welcome to Unit 6!")
let Sparas := ($paral, Spara2)

return xdmp:save ("C:\wordl.docx",coxml:create-simple-
docx (ooxml :document (ocoxml :body (Sparas))))

2. Click XML
3. Open C:\word1l.docx

H9-uv@)- wordl.doot - Microsoft Word -BX
Humel Insert Page Layout References Mailings Review VWiew Dewveloper Add-Ins MyTab Acrobat @

& ibri (Bol - - EE*'EE""‘="-_
B i e | A

| A A A Y] (& l- Stjes~ Siess

Clipboard ™ Font IFi Paragraph L] Styles L]

Hello, World!

Welcome to Unit 6!

Page: 1 of 1 | Words: & | - | |

4. Enter the following into CQ
xquery version “1.0-ml”;

import module namespace ooxml= "http://marklogic.com/openxml" at
"/MarkLogic/openxml/word-processing-ml-support.xqy";

let Stext := ooxml:text ("Hello, ")

let Stext2 := ooxml:text ("World!'!")

let Srun := ooxml:run((Stext, Stext2))
let Spara := ooxml:paragraph ($run)

let S$body := ooxml:body (Spara)

let $document := ooxml:document (Sbody)

return xdmp:save ("C:\word2.docx",coxml:create-simple-docx (Sdocument))

5. Click XML
6. Open the file C:\word2.docx

‘1 [L " word2.docx - Microsoft Word - B X

Humel Insert Page Layout References Mailings Review View Developer Add-Ins MyTab Acrobat @

l-f;._ 4 Calibri [Body) |1 - [iE S - e |[EE AR & %
P (B LUk x x| [E(E EE|ls ick Change Editi
= ol e

Ay S
Clipboard ™= Fant L] Paragraph] Styles]

Hella, Waorld!

Page:1ofl | Words:2 |] | |

7. Enter the following into CQ
xquery version “1.0-ml”;

import module namespace ooxml= "http://marklogic.com/openxml" at
"/MarkLogic/openxml /word-processing-ml-support.xqy";

let $styles := ooxml:list-paragraph-property ("1")

let S$paral := ooxml:paragraph ((ocoxml:run (ooxml:text ("MarkLogic
Toolkits for:"))))

let S$para?2 := ooxml:paragraph ((ocoxml:run (ooxml:text ("Word"))), Sstyles)
let S$para3ld :=

ooxml :paragraph ((coxml : run (coxml:text ("Excel"))), $styles)

let Sparad :=

ooxml :paragraph ((ocoxml:run (coxml:text ("PowerPoint"))), S$Sstyles)

let S$paras := (Sparal, S$para2, S$Spara3, S$paraid)

return xdmp:save ("C:\word3.docx",ocoxml:create-simple-
docx (ooxml :document (ooxml :body (Sparas))))

8. Click XML
9. Open C:\word3.docx

-

\ d9- v e word3.doot - Microsoft Word - gx

Humel Insert Page Layout References Mailings Review View Developer Add-Ins MyTab Acrobat @

.“i ,!. E;Iibjlﬂu:ﬂv . x'v|1'1l%: :-1.45(. -]L-s:.:] & %

Hﬁ

Paste

Quick Change | Editing
Iay e Aa'”A l :]. Styles = Styles -
Clipboard ™ Font L] Paragraph] Styles]

|

harkLogic Toolkits for:
1. Waord
2. Excel

3. Fowe rFuintI

Page:1ofl | Words:9 |] | |

10. Enter the following into CQ

xquery version "1.0-ml";
import module namespace ooxml= "http://marklogic.com/openxml" at
"/MarkLogic/openxml/word-processing-ml-support.xqgy";

let S$content-types:= ooxml:simple-content-types ()
let $rels := ooxml:package-rels|()
let $para := ooxml:create-paragraph ("Four score and seven years ago

our fathers brought forth, upon this continent, a new nation,
conceived in Liberty, and dedicated to the proposition that all men
are created equal.")

let $document := ooxml:document (coxml:body (Spara))
let S$package := ooxml:docx-package (Scontent-types, S$rels, S$document)

return xdmp:save ("C:\word4.docx", Spackage)

11. Click XML
12. Open C:\word4.docx

ul

Do)\ 96 @)+ word4. doct - Microsoft Word -8B X
Home | Insert Page Layout References Mailings Review View Dewveloper Add-Ins MyTab Acrobat @

Calibri [Body) 1 -

e = E e A A
B |BIg_vabsx2x’||§! =

Paste - - Quick Change | Editing
ab® . - S - | 53
- J ¥ A A A A &~ Styles ~ Styles~ ||~
Clipboard ™ Font (] Paragraph] Styles (] |
Four score and seven yesars 2g0 our fathers brought forth, upon thiscontinent, 2 new nation, conceived
in Liberty, and dedicsted to the proposition that 21l menare crested g ual.l
E
=]

Page:1ofl | Words:30 | <5 | B3 |

Finally, we’ll create a document using <w:altChunk>. Our document will import a wiki entry, a text file,
and a .docx.

13. Copy word\import.txt to C:\import.txt on your file system
14. Load word\import.docx to the Documents database

In CQ with Toolkits selected as content source (adjust path to file accordingly):
xquery version “1.0-ml”;

let S$filename := "/import.docx"
return xdmp:document-load ("C:\documents\unit6\import.docx",
<options xmlns="xdmp:document-load">
<uri>{$filename}</uri>
</options>)

15. Create a file C:\Program Files\MarkLogic\Docs\altChunk.xqy
16. Open altChunk.xqy and enter the following
a. Adjust path for import.txt accordingly
b. If you don’t have wifi access, you won’t be able to import the wiki entry

xquery version "1.0-ml";
declare namespace gso = "generate-simple-ooxml-alt";
declare namespace html ="http://www.w3.0rg/1999/xhtml";

declare function gso:generate-simple-ocoxml-alt (
Scontent-types as node (),
Srels as node (),
Sdocument as node (),
Sdocumentxmlrels as node(),
Simportedhtml as node (),
Stxt as node (),
Sdocx as node ()
) as binary ()
{
let Smanifest := <parts xmlns="xdmp:zip">
<part>[Content Types].xml</part>
<part> rels/.rels</part>
<part>word/document.xml</part>
<part>word/ rels/document.xml.rels</part>
<part>word/import.htm</part>
<part>word/import.txt</part>
<part>word/import.docx</part>

</parts>
let Sparts := (Scontent-types, $rels, S$document, Sdocumentxmlrels,
Simportedhtml, txt, Sdocx)

return
xdmp:zip-create ($Smanifest, S$parts)

bi

let Scontent-types :=
<Types xmlns="http://schemas.openxmlformats.org/package/2006/content-
types">
<Default Extension="rels" ContentType="application/vnd.openxmlformats-
package.relationships+xml"/>
<Default Extension="xml" ContentType="application/xml" />
<Override PartName="/word/document.xml"
ContentType="application/vnd.openxmlformats-
officedocument.wordprocessingml.document.main+xml" />
<Default Extension="htm" ContentType="application/xhtml+xml"/>
<Default Extension="txt" ContentType="text/plain"/>
<Default Extension="docx"
ContentType="application/vnd.openxmlformats-
officedocument.wordprocessingml.document.main+xml" />
</Types>

let Srels :=
<Relationships
xmlns="http://schemas.openxmlformats.org/package/2006/relationships">
<Relationship Id="rIdl"
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/off
iceDocument" Target="word/document.xml"/>
</Relationships>

let $document :=
<w:document
xmlns:w="http://schemas.openxml formats.org/wordprocessingml/2006/main"
xmlns:r="http://schemas.openxmlformats.org/officeDocument/2006/relationships™”
>
<w:body>
<w:altChunk r:id="altChunkl" />
<w:altChunk r:id="altChunk2"™ />
<w:altChunk r:id="altChunk3" />
<w:p><w:r><w:t>Coolest document ever!</w:t></w:r></w:p>
</w:body>
</w:document>

let S$documentxmlrels :=

<Relationships
xmlns="http://schemas.openxmlformats.org/package/2006/relationships">
<Relationship Id="altChunkl" TargetMode="Internal"
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/aFC
hunk" Target="import.htm" />

<Relationship Id="altChunk2" TargetMode="Internal"
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/aFC
hunk" Target="import.txt" />

<Relationship Id="altChunk3" TargetMode="Internal"
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/aFC
hunk" Target="import.docx" />

</Relationships>
let S$docx := fn:doc("/import.docx")
let $txt := xdmp:document-get ("C:\documents\unité6\import.txt")
let $html := <html><body>
<hl>MarkLogic</h1>{
xdmp:tidy (

xdmp:http-get ("http://en.wikipedia.org/wiki/Mark Logic",<options
xmlns="xdmp:document-get">
<repair>full</repair>
</options>)//*:div[@id="bodyContent"]//*:p[2]
) (21}
</body></html>

let $package := gso:generate-simple-ooxml-alt ($Scontent-types, S$rels,
Sdocument, Sdocumentxmlrels, S$html, Stxt/text (), S$docx)

let $filename := "hello-world.docx"
let $disposition := concat ("attachment; filename=""",$filename,"""")
let $x := xdmp:add-response-header ("Content-Disposition", S$disposition)

let $x:= xdmp:set-response-content-type ("application/vnd.openxmlformats-
officedocument.wordprocessingml.document")
return

Spackage

17. In IE navigate to http://localhost:8000/altChunk.xgy
18. When prompted, choose to open the document in Word

r R}

6,3 H9-0@®)+ hello-world[1].docx - Microsoft Word - BX
[&ees 4
a

J— ©

—/ Home Insert Pagelayout References Mailings Review View Developer Add-Ins MyTab Acrobat

MarkLogic

MarklLazig is a software company located in San Carlos, California, USA. The company isa provider of 2
purpose-built database for unstructurad information serving the mediz, sovemment, financizl services,
and other jndustriss[citation nesded].)arkLogic was ranked the 4thfastest srowing companyin Silicon
Valley fortime period betwaen 2003 and 2007 in Deloitte's "Fast 50" [1] It was named z finalist for the
21st annual CODIE 2wards in the content management gatezgry[2][3] Marklogic won the 2009 CODIE
award for best Data Base Management Solution.[4]. ljarkLozic 2lso won the KMWorld Trend-Setting
product of 2010. [SIMWBS named top hot company under the radar by g)yegk.

This is some text from a text file!

Marklagig asthe platform for the system in Minority Reportl
{With zll the swesome minus Rube Goldberg etched woodan ball outputs)

Coolest documeant ever!

== [= 1 —~ —

Given our understanding of WordProcessingML we used <w:altChunk> to import a .docx saved in
MarkLogic, a .txt file on the local filesystem, and the MarkLogic web page from Wikipedia into a brand
new .docx document that included our own constructed paragraph.

Constructing our .docx, we created our own [Content_Types].xml to include the file types for the .docx,
.txt, and XHTML parts. We related these to the main content part document.xml by creating our own
document.xml.rels file to include these relationships. Finally, we created our own function to zip up the
document parts for us so we could deliver the final .docx package. It was that simple.

http://localhost:8000/altChunk.xqy

The Toolkit APIs are intended to jumpstart development with WordProcessingML and while they include
a lot of functionality, are not comprehensive. Depending on your goals you may have to dig deeper into
the format and may end up writing your own functions to enable the functionality you require.

TOPIC

Creating Excel Workbooks
After reading Office Open XML 101 and reviewing the SpreadsheetML API, we have an idea of how to
construct Word documents on the Server. Now we’ll put that into action.

To review, the main body of content in Excel is found in the sheet#.xml part, where # is the number of
the sheet in the workbook. The main document part is workbook.xml, which contains references to the
worksheets for the workbook and is related to them through relationships files (.rels, workbook.xml.rels,
etc.)

The sheet#.xml is combined with other XML parts to create a .xIsx package.

The body of content for a worksheet is found in the <sheetData> element within sheet#.xml.
<sheetData> contains rows (<row>), which contains cells (<c>).

Additionally, something very useful in Excel is the application of Named Ranges to identify a contiguous
selection of rows and cells. In SpreadsheetML, this is done through use of the table element (<table>).
(<table>) elements may have an optional child (<autofilter>) element. These application of these
elements to our .xIsx package manifest themselves for the workbook in Excel as a selectable range in a
dropdown list of named ranges for the workbook and as a header filter selection for columns included in
the named range respectively.

WALKTHROUGH

Exercise 3: Generating Excel Workbooks

1. Enter the following into CQ

xquery version "1.0-ml";
import module namespace excel= "http://marklogic.com/openxml/excel"
at "/MarkLogic/openxml/spreadsheet-ml-support.xqy";
let Scells := ((excel:cell ("Al1",1000),
excel:cell("B1",2000),
excel:cell ("C1",3000)))
let Srow := excel:row(Scells)
return xdmp:save ("C:\excell.xlsx",excel:create-simple-
xlsx (excel:worksheet (Srow)))

2. Click XML
3. Open C:\excell.xlsx

\H9-e-@)

a3l
ca

excell xlsx - Microsoft Excel

ul

- B X

Home [Insert [Page Layout [Formulas [Data [Review [View [Developer [Add-Ins [My Tab [Acrobat |@ - &8 X

ﬁ & Calibri v|11 - General - S=lnsert - | X - ﬁr [ﬁ

- Ga([B 1 U-|A & $ - % I Delete - m-sn& o

dste b O 1

- 7 |_ "” - A "| : %l in.g| (2l Format = | (2~ Fifter~ Select~

Clipboard T Font (] Alignment (] Mumber I« Cells Editing
| Al - £ | 1000 ¥
Ploan] e [c [o [e [F] W[1 [
1 1000 2000 3000 1
2
3 |

M 4k M| Sheetl |

Ready | 7 = S

4. Enter the following into CQ:

xquery version "1.0-ml"™;
import module namespace excel= "http://marklogic.com/openxml/excel"
at "/MarkLogic/openxml/spreadsheet-ml-support.xqy";

let Scells := ((excel:cell("Al",1),
excel:cell ("B1",2),
excel:cell ("C1",3)))
let Srow := excel:row($cells)
let Scolwidths := excel:column-width ((25,25,25))
let Sworksheet := excel:worksheet (Srow, $colwidths)
let S$package := excel:create-simple-xlsx(Sworksheet)

return xdmp:save ("C:\excel2.x1lsx", Spackage)

5. Click XML
6. Open C:\excel2.xlsx

\H9-e-@)

a5l
ca

excel2 xlsx - Microsoft Excel

Home | Insert Page Layout Formulas Data | Review | View Developer Add-Ins MyTab Acrobat @ - 3 X
| I I I I I I | I I I

8
- B X

E & Calibri v|11 General ~ Jalnsert+ | X - ﬁr [ﬁ
Past [gv”A‘ Av| odidin Bad 3 Delete ~ || [~ Sort & Find &
aste - o in,
- || D A W8 5% [Z)Format~ || (2~ Filter~ Select~
Clipboard ™= Font (F] Humber = Cells Editing
| Al . ¥
(4 A B | o [£ [J
1 1 2 3 1
| 2 |
| 3 |
M 4 ¢ M| Sheetl |

7. Enter the following into CQ:

xquery version "1.0-ml";
import module namespace excel= "http://marklogic.com/openxml/excel"
at "/MarkLogic/openxml/spreadsheet-ml-support.xqy";

let Scells := ((excel:cell("A1",1000),
excel:cell ("B1",2000),
excel:cell ("C1",3000)))
let Srow := excel:row($Scells)
let Sworksheets := excel:worksheet (Srow)
let Sws-count := fn:count (Sworksheets)
let S$content-types := excel:content-types ($ws-count,0)
let $Sworkbook := excel:workbook ($ws-count)
let Srels := excel:package-rels/()
let $Sworkbookrels := excel:workbook-rels ($Sws-count)
let S$package := excel:xlsx-package (Scontent-types, S$workbook, S$rels,
Sworkbookrels, Sworksheets)

return xdmp:save ("C:\excel3.x1lsx", Spackage)

8. Click XML
9. Open C:\excel3.xlsx

“| 9 - - /I s excel3 . xlsy - Microsoft Excel -2 X
Home | Insert | Page Layout | Formulas | Data | Review | View | Developer | Add-Ins | My Tab | Acrobat |@ - o

E % calibri -lu - SeaInsert - Evﬁr [ﬁ
BB 2 O-|A A ik

*

=
=| = General <

= ||% % o

3 Delete -

b

g Eer A |E) 2 Fomat - | 2+ Fiter~ select-
Clipboard ™= Font IFi Alignment IFi Mumber T« Cells Editing

| Al - # | 1000 v
Pl A | e [c [o [e [F [& [w [1 | 1
1 1000 2000 3000

2

3 |

M 4k M| Sheetl I |
Iteadpll b

10. Enter the following into CQ:

xquery version "1.0-ml";
import module namespace excel= "http://marklogic.com/openxml/excel"
at "/MarkLogic/openxml/spreadsheet-ml-support.xqy";

let Scellsl := ((excel:cell("Al","Headingl"),
excel:cell ("B1", "Heading2"),
excel:cell ("C1l", "Heading3")))
let Srowl := excel:row(Scellsl)

let Scells?

((excel:cell ("A2","Valuel"),
excel:cell ("B2","Value2"),
excel:cell ("C2","Value3")))

let Srow2 := excel:row(Scells?)

let Scells3 := ((excel:cell("A3","Valuell"),
excel:cell ("B3","Value22"),
excel:cell ("C3","Value33")))

let Srow3 := excel:row(Scells?)

let Scolwidths := excel:column-width ((25,25,25))

let Sworksheets := excel:worksheet ((Srowl, Srow2, Srow3), S$Scolwidths,1)
let Sws-count := fn:count (Sworksheets)

let S$Scontent-types := excel:content-types (Sws-count,1)

let $Sworkbook := excel:workbook ($ws-count)

let Srels := excel:package-rels/()

let $Sworkbookrels := excel:workbook-rels ($Sws-count)

let Sworksheetrels := excel:worksheet-rels(1l,1)

let Stable :=

excel:table(1l,"Al:C2", ("Headingl", "Heading2", "Heading3") ,xs:boolean ("t
rue"), xs:boolean("true"))

let S$package := excel:xlsx-package (Scontent-types, Sworkbook, S$rels,
Sworkbookrels, S$worksheets, Sworksheetrels, S$table)

return (Stable, xdmp:save ("C:\exceld.xlsx", $Spackage))

11. Click XML
12. Open C:\excel4.xIsx

NCEECH Ik
o il

exceld xlsx - Microsoft Excel

Tabl...

=

].m“ Insert | Page La]rt| Furmulas| Data | Review |Vim | Dﬂrelupe| Add-Ins | My Tab | Acrobat | Design ‘ @ - o

*

£ | Calibri |11 - ==g General v & S=Insert ~ - ﬂ [ﬁ
Ep |B oI E'HA‘ A |§§§ ||| % - % o Delete ~ E'
Paste i Styles || ... Sort & Find &
-] A EE - %8 5% + | [ElFormat - | 2+ Fitter~ Select~
Clipboard = Font IFi Alignment IFi Mumber T« Cells Editing
Al - f | Heading1 ¥
A B C D | i
1 eading i Heading pd| Heading - =
2 Valuel Value2 Value3
3 Valuell Value22 Value33)
4
5
H 4+ M| Sheetl
_ Ready | &

13. Click on the down arrow next to Al in the upper left to view our named range “Tablel” and

select it.

r -
@ o 9 - - @& ' s exceld ulsx - Microsoft Excel Tabl... -8 X
A | |

]Home“ Insert | Page I.a]rt| Furmulas| Data | Reviaw |View | Dwelupe| Add-Ins | My Tab | Acrobat | Design| @ - B X
E & | Calibri |11 - General - = lInsert ~ x - ﬂ [ﬁ
G |B 7 U-|A X = $ - % o 3% Delete - || 3]~
Paste . Styles || .u Sort & Find &
- = i=| |- <8 5% - | ElFormat || (2~ Fitter~ Select~
Clipboard ™ Font P} Alignment] Mumber s Cells Editing
Tablel - (_" S | Valuel &
A B C D | i
1 eading - eading - eading A4 =
2 |Valuel valuez Vvalues
3 |Valuell Value22 Value33

4
=a
M 4 F H | Sheetl I 1

Ready | [| Count: &

1S

14. Next click any down arrow next to any of our headings to reveal the filter list.

exceld xlsy - Microsoft Bxcel Tabl... = =

41

N B
= Home |Insert | Page Layo| Farmulas | Data | Review | View | De'\relopm| Add-Ins | My Tab | Acrobat | Design | @ - =@ x
SE== General Il A Salnset- | I - ﬂ fﬁ

= = @ -

== ¥ | |calibri -1 -
— L3 B L U-[A A

|$*’ﬁ !| % Delete -

Paste ; - T styles | ... Sort & Find &
- T E S A %6 3% - | [ElFormat~ | &2~ Fitter~ Select~
Clipboard ™ Font (] Number = Cells Editing |
| Tablel ¥
C D E

ji] Headingl
4] sortatoz Value3
Z)| sotzton alue22 Value33

Sort by Color 4

"
T
il

Filter by Colo k
Text Filters 3

[(Select All)
Valuel

] Value 11

If you uncheck any item in the dropdown filter and click “OK”, the row containing the unchecked value is
then made invisible in Excel as the filter is applied to the entire range. If we were to create a separate
named range for each column, then the filter would apply only to values within that column.

Note: Named ranges added to the workbook are named by count (“Table1”,”Table2”, “Table3”, etc.).
This is a function of the API, and not Excel. But now that you know what functions to look at, you can
change that depending on your requirements.

R1C1 vs Al notation
There are 2 ways to identify a cell in Excel. One is by using Al notation, where a letter is used for the
column identifier, immediately followed by a number which indicates the row position for the same cell.

Al notation is what Excel uses by default within each worksheet for identifying cells.

R1C1 notation refers to the row number, followed by a column number. An example of this notation is:
R2C2 (identifies cell at row 2 column 2).

In the above examples, we explicitly defined our cells for simplicity. A more likely scenario would be to
dynamically generate our cell column and row position numbers from within loops or position of our
query results. We can pass a row index and a column index to the excel :rlcl-to-al () function
and have it generate Al notation for us.

Sometimes your query may fetch rows.

15. Enter the following in CQ and evaluate.

xquery version "1.0-ml";
import module namespace excel= "http://marklogic.com/openxml/excel"
at "/MarkLogic/openxml/spreadsheet-ml-support.xqy";

declare namespace ms =
"http://schemas.openxmlformats.org/spreadsheetml/2006/main";

let Srows:= for $j in 1 to 25
return excel:row (
for $i in 1 to 100
return
excel:cell (
excel:rlcl-to-al(ssj,si),
xdmp : random (5000)
)
)

return xdmp:save ("C:\excel5.xlsx",
excel:create-simple-xlsx (excel:worksheet (Srows)))

Other times you may be starting with columns.

16. Enter the following in CQ and evaluate

xquery version "1.0-ml";
import module namespace excel= "http://marklogic.com/openxml/excel"
at "/MarkLogic/openxml/spreadsheet-ml-support.xqy";

declare namespace ms =
"http://schemas.openxmlformats.org/spreadsheetml/2006/main™;

let Scolumns := for $i in 1 to 50
let $cells:= for $j in 1 to 50
return excel:cell (
excel:rlcl-to-al($3,si),
xdmp: random (5000))
return <column>{$cells}</column>

let Srows := for $1 in 1 to fn:count (Scolumns)
return excel:row(Scolumns/ms:c[$1])
return xdmp:save ("C:\excel6.x1lsx",
excel:create-simple-xlsx (excel:worksheet (Srows)))

17. Open excel5.xIsx and excel6.xlsx to view the results

(e H) c @ B excel5.xlsx - Microsoft Excel -8 X
A= | Home | Insert Page Layout Formulas Data Review View Developer Add-Ins MyTab Acrobat @ - = X

=] ¥ | |calibri 11 - |§ = gl = General - galnsert ~ PR ? fﬁ

P—t BB s u-Aq||E==E|8"% ™ 3 Delete - | 3]~ e

aste : = r 25 || g 0 in
- F || E A |||E - |58 5% - | [ElFormat~ | 2~ Filter~ Select~

Clipboard T Font IF] Alignment IF] Mumber = Cells Editing

| Al > (- £ | 3773 ¥
CL CM CN co cep ca CR Ccs CcT cu CV

11 4493 3560 207 3870 4788 371 400 1744 594 797 4925
12 3498 4441 1046 3513 389 777 1618 3129 3410 2795 3364

13 4888 282 3501 2770 3298 2463 2550 3959 898 4207 3109
14 2563 3868 422 2862 3266 587 4158 1278 2120 4227 3640
15 2483 2368 4548 334 1305 1516 2676 4089 3045 1275 2204
16 2933 4194 4587 1527 1620 2719 446 2213 3131 2562 3196
17 2672 1502 4307 1998 4010 1240 3212 2200 4479 1441 28
13 3288 3012 886 2558 2388 778 4985 2678 4531 938 1242
19 2687 335 2780 1864 2953 1445 403 2885 4375 2845 2767
20 3419 3756 3866 467 4743 841 582 1913 788 1142 588
21 328 2179 4437 4913 ATEE 3219 1380 2761 2235 2883 4507 |=
22 1146 3805 2708 287 A357 935 884 1261 1348 4044 1631
23 26 1076 1340 3485 319 2123 4506 1318 3743 4333 3888
24 3956 2033 3087 3372 1673 4311 4825 4718 2641 1489 3588
25 3359 4156 3685 3438 1192 4027

M 4 » ¥ | Sheeti ¥

Ready | £ |

Conclusion

To learn more about the Toolkits for Word, Excel, and PowerPoint, visit us at:

http://developer.marklogic.com

http://developer.marklogic.com/

