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OVERVIEW
MarkLogic®, the only Enterprise NoSQL database, is designed to scale to large amounts of content. The intent 
of this guide is to provide details about MarkLogic core functions and operations so that DBAs, Infrastructure 
Architects, IT Managers, Developers and Engineers can configure MarkLogic for optimal success. 

Because there are many aspects involved in understanding resource consumption, this guide attempts to break 
down the overall problem by describing common MarkLogic functions and then providing detail on system impact 
(I/O, CPU, memory, storage size, network). We also show examples of how to monitor these various system 
components, how to remediate problems, and important limits to keep in mind.

The whitepaper introduces basic MarkLogic terms for those readers who might be new to the product and concepts, 
but we also assume that readers will consult the MarkLogic Documentation for background on specific functions or 
operations. This guide views MarkLogic through the lens of resource consumption and infrastructure planning.

This guide applies to MarkLogic version 7 and 8.

MARKLOGIC SERVER ARCHITECTURE AT A GLANCE
MarkLogic Server has many different components, all of which require varying levels of system resources. 

Throughout this paper, refer this diagram to help understand what types of system resources are being used for any 
given process flow.
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TERMINOLOGY AND GENERAL CONCEPTS
A database consists of one or more forests. A system can have multiple databases, and generally will, but 
each query or update request executes against a particular database. A forest contains a set of records called 
documents, along with all their indexes, mapped to a physical location on disk. Documents within a forest are 
organized into stands. Each forest holds one or more stands. A stand holds a subset of the forest data and exists as 
a physical subdirectory under the forest directory.

Each MarkLogic server instance runs a process that can perform Evaluator (E-node) and Data Manager (D-node) 
tasks. E-nodes have application servers, parse requests, and return responses. E-nodes are also responsible for 
executing JavaScript or XQuery server-side code. 

D-nodes hold data and indexes and are responsible for maintaining transactional integrity during insert, update, and 
delete operations as well as other data management tasks such as forest recovery, backup operations, and on-disk 
forest management. D-nodes are also responsible for providing forest optimization (merges), index maintenance, 
and content retrieval. 

Any specific host running MarkLogic can be configured as either an E- or D-node or a combined E/D node. This is 
a configuration option. D-nodes are defined by the presence of an attached forest on the node; E-nodes don’t have 
attached forests, but they do have application servers. So the components are much the same for a shared E/D 
node – it’s just that all functions run on a single host. We’ll talk more later about the reasons to create an architecture 
with separated E/D nodes, but for now, just consider that either configuration is fine.

FOREST

MEMORY

LIST
CACHE

DISK I/O

MEMORY

COMPRESSED
TREE CACHE

DISK I/O

MEMORY

TRIPLES
CACHE

DISK I/O

MEMORY

TRIPLES 
VALUE
CACHE

DISK I/O

MEMORY

MEMORY 
MAPPED

INDEX

DISK I/O

MEMORY

NETWORK

IN MEMORY
STAND

DISK I/O

JOURNAL
MGR

DISK I/O

REPLICATION

REBALANCING

MERGING

REINDEXING

DISK I/ODISK I/O

DISK I/O

CPUCPU

CPU
(NICE) CPU

AGGREGATOREXPANDED TREE
CACHE

QUERY EVALUATOR TOKENIZER

TASK SERVERAPP SERVERAPP SERVER

CPU

MEMORY

MEMORY

CPU

CPU

BROADCASTER

NETWORK

SHARD E/D NODE

Figure 2: Shared E/D-node

2



WHAT IS A DATABASE SERVER?
MarkLogic is a database server – but one with many features not found in traditional database systems. It has the 
flexibility to store structured, unstructured, or semi-structured information. It can run both database-style queries 
and search-style queries, or a combination of both. It can run highly analytical queries too. It can scale horizontally. 
It's a platform, purpose-built from the ground up, that makes it dramatically easier to author and deploy today's 
data-rich applications.

Figure 3: Cluster

MarkLogic Server is both a database and an application server. When you issue a query against MarkLogic, you 
send the query to the application server, which then broadcasts the query out to the forests. If you’ve got a multi-
host environment, the E-node process will broadcast to all the D-node processes. The D-nodes resolve the query 
against their indexes and return a result set composed of documents. These documents are in a compressed binary 
format; they are first saved in-memory into the compressed tree cache, and then sent to the E-node where they are 
expanded into their original format in the expanded tree cache. The E-node will aggregate the results from all the 
D-nodes and sort the result set if needed. The application server then returns the result set to the calling client. 

When we use the term “application server” here, we are specifically referring to the MarkLogic Application Server – 
which is simply a communication mechanism for the database backend. Just as a relational database might provide 
a web services endpoint that parses URL parameters, translates those into query terms, executes the query against 
the database and then returns a response, MarkLogic application servers provide HTTP-based endpoints for data 
services. 

To explain how MarkLogic components use system resources, we’ll walk through the lifecycle of our data and 
explain process flows in the context of our architectural diagram. 

Part I will cover ingestion. We’ll start by looking at what happens at a system level when documents are inserted 
into the database, explaining the in-memory stand, merges and journal writes. Part II will cover tokenization and 
indexing. We’ll explain how documents are broken up into tokens and then indexed when ingested. Part III will focus 
on queries and what happens when queries are executed against the server. Part IV will cover operational concerns 
as they pertain to system resources: cluster topologies, backups, rebalancing and reindexing, tiered storage, high 
availability and swap recommendations.
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PART I: INGESTION

INGESTION
Ingestion involves system resources from the D-node functionality of MarkLogic Server. 
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When content is ingested, we’re concerned primarily with CPU and I/O. The forest at the bottom of the diagram 
represents the data on disk. We’re also writing journals as well, represented by the Journal Manager on the right. 
So ingestion is a heavy I/O and CPU intensive activity. Memory is also involved, since we are writing into the in-
memory stand and populating in-memory caches.

30,000 FOOT VIEW: INGEST SUMMARY
Before we go too deep into the internals of what happens during ingestion, here’s the high level view: when 
documents are ingested into MarkLogic, they are loaded into memory and the transactions recorded into an on-disk 
journal. Periodically, a forest checkpoint occurs where the data in-memory is flushed to disk. In addition, MarkLogic 
runs a background process called merging that combines and optimizes the stands and index structures on disk. 

There are multiple operations that consume resources in the ingest process. Some of those operations must happen 
in the foreground, immediately: writing to the journal, for example. Other operations happen in the background, 
prioritized behind foreground operations (and subject to throttling through administrative settings.)  You will find that 
MarkLogic utilizes resources – particularly I/O and CPU – even at times when no queries are issued. The system is 
constantly optimizing for the next read or write operation. 

This means that you’ll observe the following, all of which is normal and means the system is operating properly:

• Spiky I/O writes. Big sequential writes, lots of smaller background I/O CPU activity (seen as nice percentage); 
this is different from a traditional relational database where the I/O may be relatively stable

• High I/O and CPU activity, as well as increased memory utilization. If the documents need to be transformed 
in any way on input, MarkLogic will use CPU resources to do the transformations

That’s the high level; if that’s all you want to know about ingest, skip to the merge section. Otherwise, continue on to 
understand these on-disk and in-memory structures and all of the associated details.
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INGEST IN DETAIL
When a new document is loaded into the database, the E-node first tokenizes the document. MarkLogic puts this 
document in an in-memory stand and writes the action to an on-disk journal to maintain transactional integrity in 
case of system failure. 

After enough documents are loaded, the in-memory stand will fill up and be flushed to disk, written out as an on-
disk stand. Each new stand gets its own subdirectory under the forest directory, with names that are monotonically-
increasing hexadecimal numbers (ie, 00000000, 00000001, etc.).That on-disk stand contains all the data and 
indexes for the documents loaded since the last in-memory stand was written out to disk. It's written from the 
in-memory stand out to disk as a sequential write for maximum efficiency. Once it's written, the in-memory stand's 
allocated memory can be freed.

As more documents are loaded, they go into a new in-memory stand. This in-memory stand will eventually fill up, 
and the in-memory stand gets written as a new on-disk stand. Sometimes, under load, you have two in-memory 
stands at once, when the first stand is still writing to disk as a new stand is created for additional documents – 
ingest does not stop while the in-memory stand is being written out to disk.

The mechanism continues with in-memory stands filling up and writing to on-disk stands. However, the in-memory 
stand size is much smaller than the optimum on-disk data structure for resolving queries. As documents are added 
to stands, terms are added to the stand’s term list, which is an index used to resolve search queries. To read a 
single term list, MarkLogic must read the term list data from each individual stand and unify the results. To keep 
the number of stands to a manageable level where that unification isn't a performance concern, MarkLogic runs 
merges in the background. A merge takes some of the stands on disk and creates a new singular stand out of them, 
coalescing and optimizing the indexes and data, as well as removing any previously deleted documents. After the 
merge finishes and the new on-disk stand has been fully written, and after all the current requests using the old 
on-disk stands have completed, MarkLogic deletes the old on-disk stands. It’s important to note that this process 
happens not only on ingest but as part of any update.

Each forest has its own in-memory stand and set of on-disk stands. Loading and indexing content is a largely 
parallelizable activity so splitting the loading effort across forests and potentially across hosts in a cluster can help 
scale the ingestion work. 
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1. On document load, MarkLogic writes the action to an on-disk journal (to 
maintain transactional integrity in case of system failure) and adds the 
documents to an in-memory stand. The journal write is synchronous and must 
complete before the document is inserted.

2. After enough documents are loaded, the in-memory stand is flushed to disk, written 
out as an on-disk stand. On-disk stands are subdirectories under the forest directory, 
with names that are hexadecimal numbers (starting at 00000000 and monotonically 
increasing). The in-memory stand’s allocated memory is freed and the data in the journal 
is released.

WRITING DOCUMENTS TO STANDS

Figure 5: Writing Documents to Stands
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IMPORTANT LIMITS
More than 96 million fragments in a forest is considered to be an error condition. If forests are approaching this 
size, add forests and/or hosts and rebalance the content.

The server writes messages about these conditions to the ErrorLog:

Fragment Count Log Level

96 million or more Error 

120 million or more Critical

144 million or more Alert

160 million or more Emergency

MORE DETAIL ABOUT THE IN-MEMORY STAND
The in-memory stand size and in-memory caches are all configurable. If the group is set to “Info” log level, you may 
see messages in the log related to the in-memory stand.

The XDMP-INMMTREEFULL, XDMP-INMMLISTFULL, XDMP-INMMINDXFULL XDMP-INMREVIDXFULL, and 
XDMP-INMTRPLIDXFULL messages are informational only.  These messages indicate that in-memory storage 
is full, resulting in the forest stands being written out to disk. There is no error as MarkLogic Server is working as 
expected.

• XDMP-INMMTREEFULL indicates the in-memory tree storage is full
• XDMP-INMMLISTFULL indicates the in-memory list storage is full
• XDMP-INMMINDXFULL indicates the in-memory range index storage is full
• XDMP-INMREVIDXFULL indicates the in-memory reverse index storage is full
• XDMP-INMTRPLIDXFULL indicates the in-memory triple index storage is full

If these messages consistently appear more frequently than once per minute, increasing the ‘in-memory’ settings in 
the affected database may be appropriate. If memory is at capacity, then adding servers and rebalancing content 
across the new hosts is another way to increase cache capacity.

XDMP-INMMTREEFULL corresponds to the “in-memory tree size” setting. "in-memory tree size" specifies the 
amount of memory to be allocated for managing document data for an in-memory stand.

XDMP-INMMLISTFULL corresponds to the “in-memory list size” setting. "in-memory list size" specifies the amount 
of memory to be allocated for managing termlist data for an in-memory stand.

XDMP-INMMINDXFULL corresponds to the “in-memory range index size” setting. "in-memory range index 
size" specifies the amount of memory to be allocated for managing range index data for an in-memory stand.

DMP-INMREVIDXFULL corresponds to the “in-memory reverse index size” setting. "in-memory reverse index 
size" specifies the amount of memory to be allocated for managing reverse index data for an in-memory stand.

XDMP-INMTRPLIDXFULL corresponds to the “in-memory triple index size” setting. "in-memory triple index 
size" specifies the amount of memory to be allocated for managing triple index data for an in-memory stand.

Since the in-memory stand size is configurable, why not make it as big as possible? Then you’d load all your 
content into memory and ingestion would be very fast, with the benefit of durability provided by the journal writes. 
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While that may be true, this is not the best approach if you also need to query the data while ingesting. The on-disk 
data structures are optimized for queries; the in-memory structures are optimized for ingestion. Having small in-
memory stands and larger on-disk stands optimizes for overall performance. 

RESOURCE CONSUMPTION SUMMARY FOR INGESTION
Now that we understand the mechanisms involved in ingestion and writing the in-memory stand out to disk, let’s 
look at the system resources involved. Remember we said that ingestion is an I/O and memory intensive process. If 
transformations are involved, it’s also a CPU intensive process. Here’s a summary of what to expect:

System Resource Impact

Storage For a non-HA (no High Availability forest replicas) non-DR (no database replication) 
environment, and with the default 32 GB merge-max-size, the storage required for a 
merge is the total indexed forest size + 64 GB per forest. There may be multiple merges 
occurring, but the merges never require more than 2x the merge-max-size. 

Storage requirements can increase significantly if HA and DR are configured; for example, 
if replication is paused, all of the unshipped changes need to be retained on the master, so 
this can mean 2x to 4x the indexed data size. For database restores where data needs to 
be restored to an active database, plan for 2x indexed data size + 64 GB per forest.

I/O throughput When the in-memory stand is flushed to disk, MarkLogic does sequential writes in 512KB 
blocks. Journal writes are of varying sizes, but the largest write is also 512KB.

CPU If ingest does any transformation (XSLT, or a special XQuery or JavaScript module that 
runs on each document as it comes into the database), CPU utilization will increase. 
Mileage will vary, but CPU should be monitored during ingest.

Memory As documents are added to the in-memory stand, index structures are also created. 
Memory is allocated for the tree structure for the documents themselves, for the term list 
indexes for those documents, and for the range index, reverse index and triple index.

The memory is not pre-allocated; instead the memory is allocated as documents are 
loaded, and then released when the in-memory stand is flushed to disk. You should 
therefore expect to see memory utilization increase as content is ingested.

Network Can vary depending upon the ingest mechanism. Using MLCP and the fastload ingest 
option causes the client to insert data into the in-memory stand directly on the data node 
that hosts the target forest; otherwise, the evaluator node sends the data to the data node, 
which requires a network hop.

MORE ABOUT MERGES
30,000 FOOT VIEW: MERGE SUMMARY
Merging is a background process that consolidates stands on disk and optimizes indexes. It runs periodically when 
certain thresholds are met. When ingesting or updating content, you’ll observe the following, all of which is normal 
and means the system is operating properly:

• Spiky I/O. This happens when periodic merges run and do big I/O operations to combine files on disk
• CPU. Merges will show up as nice % in CPU statistics

When ingesting content, you should expect to see heavy I/O and CPU activity related to merges.

WHAT HAPPENS DURING A MERGE
When a document is updated, new versions of all of the fragments associated with the document update are 
created in a new stand. Any old versions of the fragment remain in the old stand with a system timestamp that 
lets MarkLogic Server know that they are old versions of the fragments. Similarly, when a document is deleted, 
its fragments remain in the old stand with a system timestamp that lets MarkLogic Server know that they are old 
versions of the fragments.
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Merges occur to move any unchanged fragments from an old stand into a new stand, deleting any old versions of 
fragments (including deleted fragments), freeing up disk space and compacting the usable fragments so they are all 
together on disk. Additionally, merges combine index data for all of the fragments in a stand, optimizing the indexes. 
Merges are a normal part of database operation, and they ensure that the system continues to perform at its best as 
updates and deletes occur. 

To summarize, as part of merging, the following occurs:

• Multiple stands are combined into one for improved performance
• Disk space is reclaimed
• Indexes and lexicons are combined and re-optimized based on their new size

Merges are a way of self-tuning the performance of the system, and MarkLogic Server continuously assesses the 
state of each database to see if it would benefit from self-tuning through a merge. In most cases, the default merge 
settings and the dynamic nature of merges will keep the database tuned optimally at all times. 

BUT HOW DOES THE ALGORITHM WORK?
As mentioned above, MarkLogic uses an algorithm to determine when to merge (consolidate stands and remove 
deleted documents). The cost of merging is proportional to the size of the stands being merged, but the benefit is 
proportional to the number of stands being merged. This is why we merge smaller stands together more frequently, 
and bigger stands less frequently, and why we try not to merge small stands with big stands (prefer to merge small 
stands with other small stands).

 There are two kinds of merges in MarkLogic:

• Manual Merge (executed by user request)
• Automatic Merge

A manual merge takes all stands in a forest and merges them down to the minimum number of stands that satisfies 
the merge max size, taking into account the cost and benefit of merges.

ESTIMATED POST-MERGE SIZE
The size of stands plays an important role in whether and how they are merged. When referring to the stand size, 
the algorithm uses an estimated post-merge size, rather than the current on-disk size. This is because merging 
will result in the removal of deleted fragments and reclamation of that space. Because it's expensive to count up 
the total size of all non-deleted fragments in a stand, a heuristic is applied based on the percentage of deleted 
fragments in the stand to estimate the post-merge stand size.

AUTOMATIC MERGE
MarkLogic evaluates all stands in all forests once per second to determine whether they should be merged. It does 
this by ordering all stands by size, then, starting with the biggest stand that is smaller than the max merge size (the 
candidate stand), it looks to see if the sum of all other stands' sizes exceeds the merge min ratio.

If the candidate stand doesn't qualify for a merge, the next-biggest stand is made the candidate, and so on until 
either a candidate qualifies or all stands have been evaluated.

If a candidate qualifies for merge, the merge process takes place on that candidate and all smaller stands.
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MERGE PROCESS
The merge itself happens by taking the set of stands to merge (which in the case of a manual merge is all stands in 
the forest), and going through them in size order.

For each stand (in estimated size order from largest to smallest):

If the stand size is >= max merge size, then

If (1 – the percentage of deleted fragments) < merge min ratio, then merge this stand with itself (just to remove 
deleted fragments).

Else find the set of next-smallest stands that can be merged with this stand while still keeping it under the max 
merge size, and merge these all into one stand.

Continue with remaining stands until all have been merged.

MERGES AND MEMORY
Although merges are generally not memory-intensive operations, it is important to understand how memory 
utilization might be impacted by merges. In particular, there is a database setting that can impact the memory 
utilization and performance of merges: preload mapped data. When this setting is enabled, then memory-mapped 
data (range indexes and lexicons, for instance) are loaded immediately into memory when a stand opens. If mapped 
data is not preloaded, then it will be paged into memory dynamically as needed.

What does this mean for merges? At the end of a merge, if you have preload-mapped data enabled, all memory-
mapped file data pages are preloaded. If the newly merged memory-mapped file data pages are still in the Linux 
kernel buffer cache at that point then there are no major faults. If the newly merged memory-mapped file data pages 
are no longer in the Linux kernel buffer cache then they are faulted in. So if you notice a high number of page faults 
at the end of a merge, this is the likely reason.

OBSOLETE STANDS
The files that make up a stand reside in a directory on the file system. The directory for a stand that has been 
marked as obsolete contains a file with the name Obsolete. When the stand is no longer needed, the directory and 
contents will be deleted.

Obsolete stands are created during the normal operation of MarkLogic Server. Stands in a forest are marked as 
obsolete so that MarkLogic Server can recover the forest from an unexpected outage. There are many reasons a 
stand can be marked as obsolete:

1. It is the output stand of a merge that has not yet completed. Once the merge finishes, the stand is unmarked and 
is available to the forest.

2. The stand is in the process of being created from an in-memory stand but has not yet been completely saved on 
disk. Once the in-memory stand is completely saved to disk, the stand is unmarked and is available to the forest.

3. All the data has been moved to a new stand through merging but this stand is still in use by a query. Once the 
last query that is using the stand completes, the stand is deleted.

4. It has been replaced by a merge but is still in use by a forest or database backup. Once all backups that are 
using the stand completes, the stand is deleted.

If a forest has been disabled, when it is subsequently re-enabled, any stand in the forest that is marked as obsolete 
will be deleted. 
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Obsolete stands should only exist at startup in the situation where the forest is disabled unexpectedly.  This  
may occur:

• If MarkLogic Server was stopped unexpectedly
• If the stand resides on a network attached device and the device became unreachable
• If there were in-flight queries or backups when MarkLogic Server was stopped

A forest can be started by:

• (Re)starting MarkLogic Server
• (Re)starting (Disabling and Enabling) the Forest

RESOURCE CONSUMPTION SUMMARY FOR MERGES

System Resource Impact

Storage For a non-HA (no High Availability, no forest replicas) non-DR (no database 
replication) environment, the storage required for a merge is the total indexed 
forest size + 64 GB per forest. There may be multiple merges occurring, but the 
merges are never more than 2x the merge-max-size, which is 32 GB by default. 
Storage requirements can dramatically increase if HA and DR are configured; 
for example, if replication is paused, all of the unshipped changes need to be 
retained on the master, so this can mean 2x to 4x the indexed data size. For 
database restores where data needs to be restored to an active database, plan 
for 2x indexed data size + 64 GB per forest.

I/O throughput Merges write in sequential 512KB units of work. This is not configurable and 
should be taken into consideration when configuring stripe and block sizes for 
the file system. As stands are combined and written to disk, I/O throughput 
demands increase significantly. Merges use background I/O that will show up 
as nice % in CPU reports. Merge priority can be changed to either dial back 
merges or to promote more aggressive merges (slow things down, freeing up 
system resources, or speed things up, resulting in a faster merge but more I/O 
and CPU utilization).

CPU Merges can be CPU intensive; the process of determining which stands should 
be merged and which fragments removed may cause CPU to increase during 
the merge process.

Memory Merges generally don’t use a great deal of memory; indexes are optimized on 
disk and then loaded into memory as needed. However, if preload mapped 
data is enabled on the database, then all memory-mapped file data pages will 
be loaded into memory at the end of a merge. If your database has lots of range 
indexes and preload mapped data is enabled, memory will spike at the end of 
the merge.

Network Merges do not utilize the network unless the file system itself is reached via the 
network (NFS, FCoE).

IMPORTANT LIMITS
MarkLogic Server limits the maximum number of stands in a forest to 64. If a single forest in a database reaches 64 
stands, the database will become unavailable, so you need merges to be able to keep up with ingestion. The merge 
priority helps you balance ingest and merging. Typical reasons for merges to not keep up with ingestion include lack 
of I/O bandwidth on the storage system or too low a background-io-limit (see below).
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MERGES AND BACKGROUND I/O
Merges run as background I/O. This can be configured as a setting on the group. For example:

• background-io-limit = 100

This will limit the background I/O for that group to 100 MB/sec per host across all hosts in that group. This should 
only be configured if merges are causing problems – it is a way of throttling back the I/O used by the merging 
process. Setting background I/O to 100 is a good starting point if you find that your merges are progressing too 
slowly. Background-io-limit is generally not used for direct attached storage. 

JOURNAL WRITES AND THE FAST DATA DIRECTORY
JOURNAL WRITES AND THE FAST DATA DIRECTORY: 30,000 FOOT VIEW
MarkLogic uses an on-disk journal to maintain transactional integrity during updates. Writes to the journal are multi-
threaded and there are multiple journals in a database. Writes will be no larger than 512 KB. The fast data directory 
is an option on a forest whereby you can use SSD storage to write the in-memory forest and journals out to the 
substantially faster SSD disk. This is helpful in an I/O constrained environment – but if enough I/O is available in your 
infrastructure, using SSDs for the fast data directory may not be cost effective.

JOURNAL WRITES: DETAILS
When you load content, MarkLogic Server performs updates transactionally, locking documents as needed and 
persisting the transaction in the journal before the transaction commits. By default, all documents involved in a 
transaction are locked during an update and the journal is used to preserve committed transactions even if the 
MarkLogic Server process ends unexpectedly. Like all ACID-compliant databases, locking can have a significant 
effect on performance. Overly aggressive holding of locks can slow performance and appear as an I/O contention 
issue at first glance. There are detailed locking statistics available in Performance History. 

The database settings locking and journaling control how fine-grained and robust you want this transactional 
process to be. By default, it is set up to be a good balance between speed and data integrity. All documents being 
loaded are locked, making it impossible for another transaction to update the same document being loaded or 
updated in a different transaction.

There is a journal write to disk on transaction commit (in addition to the journal write on transaction begin), and 
by default the system relies on the operating system to perform the disk write. Therefore, even if the MarkLogic 
Server process ends, the write to the journal occurs, unless the computer crashes before the operating system 
can perform the disk write. Protecting against the MarkLogic Server process ending unexpectedly while depending 
on the operating system to complete the write is the fast setting for the journaling option. If you want to protect 
against the whole computer crashing unexpectedly, you can set the journaling to strict. A setting of strict forces 
a filesystem sync before the transaction is committed. This takes a little longer for each transaction, but protects 
your transactions against the computer failing. Often, the disk subsystem does not actually complete the filesystem 
sync before reporting it back as complete – we recommend RAID cards with batteries or capacitors to make sure 
filesystem sync actually completes in the event of a crash.

UNDERSTANDING THE FAST DATA DIRECTORY
Solid-state drives (SSDs) have performance that's dramatically better than spinning hard disks, at a price that is 
higher. When considering SSD utilization for MarkLogic, consider the realized throughput of large sequential writes 
on the drive or subsystem you are considering. While random reads are almost always faster on SSD, some SAS/
SATA-based SSD’s can actually be slower at writing data than spinning disks, particularly as they fill up and age.
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However, many SSD systems are PCIe based and can offer massive performance gains vs. spinning disk. While the 
cost per TB is higher than spinning disk, the cost of throughput is quickly dropping below that of spinning disk.

In order to realize the benefits from high throughput SSD systems without the cost of provisioning 100% of the 
database on SSD, MarkLogic has a configurable "fast data directory" for each forest, which you setup to point to 
a directory built on a fast filesystem, such as one using SSDs. It's completely optional; if not present then nothing 
special happens and all the data is placed in the regular "data directory." But if it is present, then each time a forest 
does a merge (saving an in-memory stand included), MarkLogic will attempt to merge onto the fast data directory. 
When it can't because there's no room, it will use the regular data directory. Of course merging onto the "data 
directory" will then free up room on the fast data directory for future stands. The journals for the forest will also 
be placed on the fast data directory. As a result, all the smaller and more frequent merges will happen on SSD, 
improving utilization of disk I/O bandwidth. Note that frequently-updated documents tend to reside in the smaller 
stands and thus are more likely to reside on the SSD. 

The overall philosophy of the Fast Data Directory (FDD) is to try to put as many writes and seeks to it as we can, 
so in addition to journals, we try to put as many stands as possible on the FDD. That’s because for each term in a 
termlist that is not in List Cache, we have to seek and read that term once per stand. Having more stands on FDD 
means more of these seeks happen on FDD.

The way to have more stands on FDD is to put smaller stands on FDD. The smallest stands are checkpointed in-
memory stands, so we always try to leave room for those on FDD. Given room for those, we then use the rest of 
the FDD to put new stands as we merge, however to preserve space for future small stands, we are conservative in 
deciding whether to put merge destination stands on FDD (so even if there’s room, if it’s getting crowded, we may 
merge to spinning disk instead). 

MONITORING JOURNAL WRITES
Journal writes can be monitored using the MarkLogic Monitoring Dashboard. The Journal and Save Write is located 
on the Rates and Loads Overview page. 

rate (MB/sec) load (sec/sec)

10 1

0 0

5.6 MB/sec

11:07 11:09

JOURNAL AND SAVE WRITE

Figure 6: Journal and Save Writes in the Monitoring History dashboard

In addition, you can find historical journal write information in the Monitoring History dashboard.
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PART II: INDEXING AND TOKENIZATION
This part of the discussion also happens at the D-node layer – so here’s that diagram again:
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Figure 7: D-node

In MarkLogic, the indexes are stored with the data -- index files for on-disk stands are stored on disk with the stand, 
and are cached in-memory on the host where the forest resides. So you end up with a highly distributed system 
where the indexes are physically coupled with the data. In this part of the paper, we’ll be talking about how these 
indexes are created and updated.

TOKENIZATION
In order to create meaningful indexes, MarkLogic must first tokenize the incoming content. When you load content 
(which is made up of text strings) into MarkLogic Server, the string is broken down to a set of parts, each of which is 
called a token. Each token is classified as a word, as punctuation, or as whitespace. The process of breaking down 
strings into tokens is called tokenization. Tokenization occurs during document loading as well as during query 
evaluation, and they are independent of each other. 

Tokenization is language-specific; that is, a given string is tokenized differently depending on the language in which 
it is tokenized. The language is determined based on the language specified at load or query time (or the database 
default language if no language is specified) and on any xml:lang attributes in the content.

There are different tokenizers for different languages. There’s also a custom tokenizer, should none of the out-of-the 
box tokenizers meet application requirements. More details on how to override the tokenizer can be found in the 
Custom Tokenization chapter of the Search Developer’s Guide

MARKLOGIC INDEXES
When documents are ingested into a MarkLogic database, we create a number of indexes based upon the database 
configuration settings. There are five basic categories of indexes in MarkLogic:

• Universal Index
• Range Indexes
• Lexicons
• Reverse Index
• Triple Index
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MARKLOGIC INDEXES AT 30,000 FEET
MarkLogic indexes consist of both in-memory and on-disk data structures. Range indexes and lexicons are stored 
in-memory-mapped files – if your application uses them, you’ll see equivalent memory usage. Term lists are part 
of what’s known as the Universal Index, and those are both in-memory (in the List Cache) and in files on disk. The 
Triple Index also uses memory and disk resources; although not memory mapped, the Triple Cache will grow and 
shrink as needed to support semantics queries.

Generally, utilization of indexes means you’ll need both more storage space on-disk, and potentially more space 
utilized in-memory, in the case of lexicons and range indexes. More indexes mean larger index files, and slower 
ingestion – more work needs to be done as content is ingested to create the index files. Of course, more indexes, 
particularly when residing in-memory, can result in query performance 100X-1000X faster than if the query needs to 
be resolved through additional work at query time.

MARKLOGIC INDEXES: THE DETAILS
UNIVERSAL INDEX
The Universal Index contains entries for both terms and structure of documents. Depending upon database settings, 
the Universal Index also contains entries for phrases, specific element values, and positions (e.g. “brown” near 
“fox”). A number of different database settings (e.g. “Fast element queries”) can impact which options are enabled 
within the Universal Index. As more options are selected, the index files are created with more entries per document 
and the indexes are larger overall; the need to add more items to an index slows down ingestion somewhat. Index 
options are almost always a trade-off between ingest speed, storage requirements and query speed. 

RANGE INDEXES
Range queries are designed to constrain searches on ranges of a value. In order to constrain searches on ranges, 
a range index must be configured for the JSON property or XML element you’d like to search. For example, if you 
want to find all articles that were published in 2005, and if your content has an element (or an attribute or a property) 
named PUBLISHDATE with type xs:date, you can create a range index on the element PUBLISHDATE, then 
specify in a search that you want all articles with a PUBLISHDATE greater than December 31, 2004 and less than 
January 1, 2006. Because that element has a range index, MarkLogic Server can resolve the query  
extremely efficiently.

Range indexes are memory-mapped files. You can control when these files are loaded into memory: by setting 
preload mapped data (and preload replica mapped data) to true, you specify that the indexes are loaded into 
memory when the forest is mounted. If set to false, these are loaded dynamically into memory.

LEXICON INDEX
Lexicons are lists of unique words or values, either throughout an entire database (words only) or within named 
elements or attributes (words or values). Also, you can define lexicons that allow quick access to the document and 
collection URIs in the database, and you can create word lexicons on named fields. The collection and URI lexicons 
are just range indexes. Both the word and value lexicons are memory mapped like range indexes, but have less 
associated information (for instance, no position information or IDs of documents containing the lexicon).

REVERSE INDEX
Typically, a search starts with a query and finds the set of matching documents. A reverse query does the opposite: 
you start with a document and find all matching queries – the set of stored queries that if executed would match this 
document. Enabling the reverse index makes this search possible. 
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TRIPLE INDEX
The triple index is used to index schema-valid sem:triple elements found anywhere in a document. 

Internally, MarkLogic stores triples in two ways: triple values and triple data. The triple values are the individual 
values from every triple, including all typed literal, IRIs, and blank nodes. The triple data holds the triples in different 
permutations, along with a document ID and position information. The triple data refer to the triple values by ID, 
making for very efficient lookup. Triple data is stored compressed on disk, and triple values are stored in a separate 
compressed value store.

When triple data is needed (for example during a lookup), the relevant block is cached. Unlike other MarkLogic 
caches, the triple cache and triple value cache shrink and grow, only using memory when needed, rather than 
having all memory pre-allocated.

UNDERSTANDING INDEX EXPANSION AND COMPRESSION PATTERNS 

WHY DON’T WE JUST FLIP ALL INDEX SETTINGS TO TRUE AND INDEX EVERYTHING?
While this would certainly make searches faster at run time, enabling indexes has a cost. More indexes means 
slower ingest and greater index expansion, but faster and more accurate searches. Adding an index setting 
generally means that the server will need to do more work on ingest; in addition to storing the document itself, the 
indexes will need to be updated with information from/about that document. So it makes sense to be judicious 
about index settings and to use what is needed. This will be an iterative process; you cannot determine the optimum 
trade-offs in indexing vs. query time processing without having both the queries, query patterns and the content 
on hand. As with all databases, this tuning work cannot be complete until the system is built and may need to be 
revisited as query patterns or data changes substantially. The good news is that you can change your index settings 
at any time and MarkLogic will re-index your data for you without taking your application offline. MarkLogic is smart 
enough to only re-index documents that are impacted by the new index settings.

How much do different index settings impact disk size and performance?  The only real way to tell is to enable 
indexes and test the results, but there are some general patterns that may be helpful to understand. Field Indexes 
can be significantly expensive, both in terms of slowing down ingest and index sizes on disk, so planning for index 
expansion with Field Indexes is important. Fast-phrase or fast-case-sensitive indexes have a minor impact in terms 
of disk storage, so these may be good options for applications that need these features.

DOCUMENT COMPRESSION 
When a document is ingested into MarkLogic server, it’s converted to a highly compact serialization of the XML or 
JSON document. The data is stored in a TreeData file, and the tree structure of the document gets saved using a 
compact binary encoding. The end result is a highly compact serialization of the file, much smaller than the content 
you see in a regular file. This serialization and tokenization is automatic and cannot be turned off. Shortening of 
attribute names, use of coding vs. readable terms is often not necessary and might not result in the same realized 
cost savings as other systems without the advanced compression of MarkLogic.

INDEX EXPANSION
Even as documents are compressed, different combinations of index settings can contribute to a fairly wide range 
of index expansion ratios. Because there are so many different combinations of settings that can influence index 
expansion, looking at some common patterns may help in understanding index expansion.

PATTERN: POSITIONS
MarkLogic uses positions on various indexes to resolve NEAR queries, phrase searches, and some XPath 
expressions related to parent/child node relationships with multiple levels of nesting. Position calculations require 
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time and memory proportional to the number of terms being examined, so MarkLogic uses position information to 
reduce the number of documents and terms that need to be processed. Within the Universal Index, the following 
settings all involve positions:

• word positions
• element word positions
• element value positions
• attribute value positions
• field value positions
• trailing wildcard word positions

In addition, positions indexes can be added to range values and to triples.

For each positions index, MarkLogic adds positions information about each term to the term list. This makes the 
termlist size proportional to the number of instances of a term in the database, versus the number of documents 
containing that term. This can be a very significant expansion of the index size.

PATTERN: WILDCARDS
If the trailing wildcard index is enabled to support queries like “Marklo*” or “Lindbl??”, the size of the index will be 
dependent on the average size of the words.

For trailing wildcards, every word longer than 3 characters will have many terms. An example: “adventure”  
will become:

adv* 
adve* 
adven* 
advent* 
adventu* 
adventur* 
adventure*

Using trailing wildcards, then, in conjunction with other index settings, can cause significant index expansion. 

What if you need to support an arbitrary wildcard search like “Ma????gic”? In this case, the expansion is further 
amplified. Instead of trailing wildcards, you’d need to use the three-character index. The three-character index 
breaks each term up into trigrams; “Adventure” becomes:

adv 
dve 
ven 
ent 
ntu 
tur 
ure
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To achieve both the best coverage to support an arbitrary wildcard requirement, and also the most efficient index 
settings, we recommend that the following indexes be configured:

• word searches
• three-character word searches
• word positions
• word lexicon in the codepoint collation
• three-character word positions

Use of either trailing wildcards or the three-character index can result in significant index expansion.

HOW TO PROPERLY ESTIMATE INDEX EXPANSION RATIO 
Compression, like index expansion, varies greatly based on the terms in the content being stored.  Frequency 
and distribution, not term length, is the primary driver of compression. Index expansion together with term-list 
compression drives storage space requirements.  

To compute the raw to on-disk storage ratio for any combination of content and index settings, ingest at least 32GB 
of representative content. After loading data, detach and re-attach the forest, which will force a checkpoint and 
will flush the in-memory stand to disk. Comparing the raw on-disk size to the size of the stand after data has been 
loaded will give you the compression or expansion ratio for that combination of content and index settings.  If the 
content isn’t representative of the content to be stored at scale or the index settings aren’t identical to those used 
in production, the ratio will not hold.   Raw data size is not an indicator of on-disk size. Depending upon merge 
policies, also reserve some space for deleted fragments (fragments marked for deletion but not yet cleaned up by  
a merge).

RESOURCE SUMMARY FOR INDEXES

System Resource Impact 

Storage Index settings dramatically impact the storage footprint. When estimating overall 
storage costs, it is critical to understand index expansion for your use case. The 
easiest way to do this is to load sample content with the desired index settings.

I/O throughput More index settings means more work to do at ingest time – which means 
potentially slower ingestion, depending on overall I/O capacity.

CPU More index settings means more work to do at ingest time – which means more 
CPU utilization at ingest.

Memory Range indexes and lexicons are memory mapped, so using these indexes will 
increase overall memory utilization.

Network N/A

PART III: QUERIES
So now we have indexed data inside the MarkLogic database. It’s time to ask some questions – and by that, we 
mean queries. Now we’re going to get into the Evaluator services, so let’s look at that part of our diagram again:
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Figure 8: E-node

A client request comes in to MarkLogic Server to a port on the App Server. The App Server directs the request to 
the Query Evaluator that runs appropriate code as needed in the higher-level language: XSLT, XQuery, JavaScript, 
SPARQL or SQL. Think of the Query Evaluator as the mechanism that executes stored procedures or eval’ed queries 
on the database. If anything in those stored procedures needs data, then the Evaluator Node needs to go get 
the data from the forests and the Data Nodes. The Broadcaster will ask all the D-nodes for the data that it needs 
(example: I’m searching for documents with the word “MarkLogic”). In a cluster, this will be more than one host, so 
there will be a network cost. The D-nodes individually process the query request and send back compressed data 
to the Evaluator Node—at that point, the Aggregator uncompresses and collates all the responses and returns them 
back to the App Server and to the calling client. 

There are all sorts of caches involved as the request makes its way through the cluster, and we’ll want to understand 
those as well. Generally speaking, with queries, you’ll get the fastest performance with warm caches, so what 
MarkLogic caches, and where they reside, is critically important to understanding query performance.

QUERY PROCESSING: FILTERED AND UNFILTERED SEARCHES
30,000 FOOT VIEW
Resolving queries accurately – without false positives – typically depends on a filtering process to resolve the 
element in the query within the document. Filtered queries execute that process against the documents. Unfiltered 
queries can resolve to answers accurately by resolving the query directly against the indexes, assuming the correct 
index settings. Executing searches as "unfiltered" is an important performance optimization, particularly for large 
result sets. Filtered searches result in high I/O utilization and tend to be long running, particularly on large datasets.

UNDERSTANDING SEARCHES
When evaluating search expressions (and also when resolving XPath expressions), MarkLogic Server performs a 
two-step process. 

1. A list of candidate fragment IDs is generated directly from the indexes, based on the index-resolvable criteria 
incorporated in the various parameters passed to search. Fragment IDs are ordered according to relevance 
criteria. This step is called index resolution. 

2. Optionally, if specified in the query, the candidate fragment IDs are used to load fragments from disk. Each 
fragment is then examined in order, using the complete criteria incorporated in the various parameters passed 
to search, to determine if the fragment contains a result that matches the given search expression. This step is 
called filtering. 
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Index resolution happens on the D-nodes and filtering happens on the E-nodes.

The purpose of index resolution is to narrow the set of candidate fragments to as small a set as possible, without 
missing any. In some circumstances, the index resolution step can yield a precisely correct set of candidate 
fragments, rendering the filtering step redundant. In other circumstances, index resolution can reduce the set of 
candidate fragments somewhat, but in the candidate fragment list there are still false-positive results. The filter 
step removes false positives from the candidate list by opening each candidate document and verifying that the 
candidate matches the query. 

Because filtering has a non-trivial performance cost for large datasets, consider using filtering only if the application 
use case is intolerant of false positives and tuning index settings is not enough to eliminate false positives. 

DISK I/O, CPU AND FILTERED SEARCHES
Filtered searches, particularly searches that are unbounded (i.e. “find all documents containing the word ‘tree’” 
instead of “find the first ten documents containing the word ‘tree’”) can have significant impact on disk I/O and on 
CPU. Disk I/O and network traffic will dramatically increase, as each candidate document is opened by the D-node 
and sent to the E-node. Similarly, CPU utilization will increase, as the E-node needs to do the work of validating that 
each candidate matches the query.

MITIGATING THE IMPACT OF FILTERED SEARCHES
By default, cts:search runs filtered. So if a developer doesn’t specify the “unfiltered” option to the search, the 
filter step will occur. This may not be ideal for applications that don’t need the additional filtering, but developers 
may not be aware of the impact. For all other clients, including the Node.js and the Java clients, searches run 
unfiltered by default. 

For a server under load, filtered searches can exhibit as long-running queries, particularly if an I/O bottleneck is 
generated by the work of opening and checking the documents for matches. Long-running queries can be observed 
in the Monitoring Dashboard. 

Host Server Module Time

gordon-3.marklogic... App-Servi... ...le/endpoints/eval.xqy 533.47s

gordon-3.marklogic... App-Servi... ...le/endpoints/eval.xqy 523.46s

gordon-3.marklogic... App-Servi... ...le/endpoints/eval.xqy 518.46s

gordon-3.marklogic... App-Servi... ...le/endpoints/eval.xqy 513.45s

gordon-3.marklogic... App-Servi... ...le/endpoints/eval.xqy 503.46s

5 LONGEST RUNNING QUERIES SINCE 13:29:24

 Figure 9: Long Running Queries 

Filtered searches will also result in increased I/O utilization.

If false-positives are possible, given the index settings for an application, and if false-positives cannot be 
tolerated by the application, then filtered searches may be intentional and desired. If so, additional I/O and CPU 
capacity should be planned. In particular, as the database size grows, the impact of filtered searches on system 
resources should be measured and monitored.
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OPTIMIZING CACHES FOR PERFORMANT QUERIES
30,000 FOOT VIEW
In a cluster, you’ll have network traffic related to queries; queries enter the system by making a request via an App 
Server port – the request then gets farmed out to all the D-nodes and forests, and the response is returned back to 
the client. Each query can do the following:

• Run server side code (essentially stored procedures) which will use CPU
• Use I/O to open documents and check for term matches
• Use caches to resolve, which uses dynamic memory
• Use memory-mapped files to resolve

How and in what ratios these things happen depend in part upon the query. There are some general things that can 
help improve performance – making sure that caches are sized properly is a key component here.

LIFECYCLE OF A QUERY
Let’s look at the big picture again:
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Figure 10

Our query comes into the App Server, and then the Query Evaluator executes whatever server-side code needs to 
run. If that query requires data, the Broadcaster sends the request out to all the D-nodes that host forests currently 
enabled for that database. (If hosts are configured as shared E/D-nodes, then this usually means all the nodes in 
the cluster, depending upon which nodes host forests for that database.) The request then hits the D-node, and 
several things happen. If the request is simply “return me this document,” the D-node will check to see if it has that 
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document in any of the local forests. If it does, it will check the Compressed Tree Cache to see if the document is 
there. If it is there, the D-node just sends that in-memory document back to the E-node. The E-node checks the 
Expanded Tree Cache to see if the document is already in-memory. If not, the E-node expands that in-memory 
compressed tree data into the full XML or JSON and places the fully expanded tree into the Expanded Tree Cache 
on the E-node. The document is then returned to the client via the App Server port. Meanwhile, all the other 
D-nodes in the cluster are responding to the Aggregator, saying, “No, I don’t have that document.”

But what if the query is substantially more complex than just “Give me this document”? What if we want to find all 
documents that contain the word “apple” and have a PUBDATE before January 1, 1970? Then things get a little 
more complex.

The same Broadcaster request goes out to the D-nodes, but this time the D-nodes need to look in the List Cache to 
see if there are termlist matches. If not, we’ll need to check the termlist files on disk. This query also happens to use 
a range index, so the D-node will use the memory mapped index to figure out if there are any documents that meet 
that criteria. We might also be doing processing using semantic triples, in which case we’d hope that our doc IDs 
would be in our triples values and triples caches (otherwise, we’ll read from disk); and we might be using lexicons, 
which means we’ll want to look back in those memory-mapped indexes. Since memory will always be faster than 
disk (at least for now, although affordable SSD cards might change this in the future), we want to make best use of 
our available caches.

It’s also important to note that the in-memory stand is part of all this query processing – the documents in the in-
memory stand are included in the result set if they match the query. 

TUNING MARKLOGIC CACHES
On database creation, MarkLogic assigns default cache sizes optimized for your hardware, using the assumption 
that the server will be acting as both E-node and D-node. 

Depending upon your topology, you may want to modify the cache sizes. For instance, if your cluster has separate 
E- and D-nodes, you can improve performance by optimizing each group's cache sizes. With an E-node group, 
increase the caches related to request evaluation, and decrease those related to data management. For a D-node 
group, do the opposite. More details can be found in “Part IV: Operational Concerns” on page 25. Like most 
database tuning, it is very important to have a representative set of data, queries and load on representative 
hardware. Effects at scale, particularly with caches can be pronounced and unexpected when tuning is not 
performed with full-scale data, query volume and hardware.

CACHE PARTITIONS 
Along with setting each cache size, you can also set a cache partition count. Each cache defaults to one, two or 
sometimes four partitions, depending on your memory size. Increasing the count can improve cache concurrency 
but will reduce the size available for caches by providing more, smaller caches. More threads can access the cache, 
but there will be less space in each partition. 

An excessive number of partitions reduces the efficiency of the cache, so generally these need to be kept to a 
smaller number. Each cache partition has to manage its own aging out of entries, and can only elect to remove the 
most stale entries from itself, even if there's a more stale entry in another partition. 

LIST CACHE 
This cache holds term lists after they've been read off disk. Since index resolution happens on D-nodes, in a 
separated E/D environment, this cache should be bigger on D-nodes and smaller on E-nodes.
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COMPRESSED TREE CACHE 
This cache holds the binary representation of documents after they've been read off disk. They're stored 
compressed, to reduce space and improve I/O efficiency. Reading documents off disk is solely a D-node task; in a 
separated E/D environment, this cache should be bigger on D-nodes and smaller on E-nodes.

EXPANDED TREE CACHE 
Each time a D-node sends an E-node a fragment over the network, it sends it in the same compressed format in 
which it was stored. The E-node then expands the fragment into a usable data structure. The Expanded Tree Cache 
stores the expanded tree instances. 

You'll want to raise the Expanded Tree Cache size on E-nodes and greatly reduce it on D-nodes. Why not reduce to 
zero? D-nodes need their own Expanded Tree Cache as a workspace to support background reindexing. Also, if the 
D-node group includes an admin port on 8001, which is a good idea in case you need to administer the host directly 
should it leave the cluster, it needs to have enough Expanded Tree Cache to support the administration work. 

TRIPLE CACHE AND TRIPLE VALUE CACHE
These caches hold the references and values for triples. If triples are not in use, these caches can be decreased. 
Keep in mind that many internal MarkLogic databases, such as Meters, use triples so changing triples cache sizes 
for those databases is not recommended.

CACHING BINARY DOCUMENTS 
Large and external binary documents receive special treatment regarding the tree caches. Large binaries (those 
above a configurable size threshold, and thus managed in a special way on disk by MarkLogic) go into the 
Compressed Tree Cache, but only in chunks. The chunking ensures even a massive binary won't overwhelm the 
cache. These binaries never go into the Expanded Tree Cache. There's no point, as the data is already in its native 
binary form in the Compressed Tree Cache. 

Note that external binaries are pulled in from the external source by the E-nodes. 

This means a system with external binaries should make sure the E-node has a sufficiently large Compressed Tree 
Cache. 

MONITORING CACHE UTILIZATION
How well are your caches being used? The answer to this question can lead you to changes that can result in 
dramatic performance improvements. This section will show you how to monitor cache utilization and how to make 
changes to improve cache usage.

Cache utilization can be monitored using the Admin API or Admin console. The Expanded Tree Cache can also be 
monitored using the Monitoring Dashboard.

Use the Admin API function xdmp:cache-status to get information about the cache hit/miss/status. Although this 
API call can be resource intensive (so use it judiciously), it provides information about cache usage and partitions. 
The values returned are per host, defaulting to the current host. The function takes an optional host-id to allow you 
to gather values from a specific host in the cluster.

The output of xdmp:cache-status will look something like this: 
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<cache-status xmlns="http://marklogic.com/xdmp/status/cache">
   <host-id>18349804367231394552</host-id>   
   <host-name>macpro-2113.local</host-name>   
   <compressed-tree-cache-partitions>     
     <compressed-tree-cache-partition>
       <partition-size>512</partition-size>
       <partition-table>0.2</partition-table>
       <partition-used>0.8</partition-used>
       <partition-free>99.2</partition-free>
       <partition-overhead>0</partition-overhead>
     </compressed-tree-cache-partition>
   </compressed-tree-cache-partitions>
   <expanded-tree-cache-partitions>
     <expanded-tree-cache-partition>
       <partition-size>1024</partition-size>
       <partition-table>0.7</partition-table>
       <partition-busy>0</partition-busy>
       <partition-used>30.4</partition-used>
       <partition-free>69.6</partition-free>
       <partition-overhead>0</partition-overhead>
     </expanded-tree-cache-partition>
   </expanded-tree-cache-partitions>
   <list-cache-partitions>
     <list-cache-partition>
       <partition-size>1024</partition-size>
       <partition-table>0.2</partition-table>
       <partition-busy>0</partition-busy>
       <partition-used>0</partition-used>
       <partition-free>100</partition-free>
       <partition-overhead>0</partition-overhead>
     </list-cache-partition>
   </list-cache-partitions>
   <triple-cache-partitions>
     <triple-cache-partition>
       <partition-size>1024</partition-size>
       <partition-busy>0</partition-busy>
       <partition-used>0</partition-used> 
      <partition-free>100</partition-free>
     </triple-cache-partition>
   </triple-cache-partitions> 
  <triple-value-cache-partitions>
     <triple-value-cache-partition> 
     <partition-size>512</partition-size>
       <partition-busy>0</partition-busy>
       <partition-used>0</partition-used>
       <partition-free>100</partition-free>
     </triple-value-cache-partition>
   </triple-value-cache-partitions>
 </cache-status>
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• partition-size: The size of a cache partition, in MB
• partition-table: The percentage of the table for a cache partition that is currently used. The table is a data 

structure that has a fixed overhead per cache entry, for cache admin. This will fix the number of entries that can 
be resident in the cache. If the partition table is full, something will need to be removed before another entry can 
be added to the cache

• partition-busy: The percentage of the space in a cache partition that is currently used and cannot be freed
• partition-used: The percentage of the space in a cache partition that is currently used
• partition-free: The percentage of the space in a cache partition that is currently free
• partition-overhead: The percentage of the space in a cache partition that is currently overhead

The partition-busy value is the most useful indicator of getting a cache-full error. It tells you what percent of the 
cache partition is locked down and cannot be freed to make room for a new entry. 

In addition to xdmp:cache-status, which gives you utilization statistics, you can also monitor cache hits and 
misses using the Monitoring Dashboard. The Expanded Tree Cache hits/misses is available in the Monitoring History 
dashboard, and details on the List, Compressed, and Triple store caches are available either through the Admin UI 
or by calling xdmp:forest-status.

When do hits/misses matter? For the Expanded Tree Cache (ETC), depending upon your application, maybe not that 
much. If you have lots of misses in the ETC that means that you are getting a large number of unique documents 
back. The same applies to the Compressed Tree cache. But if you’re getting lots of misses on the List Cache or the 
triples caches (assuming a use of the semantics features), then you may well want to increase those cache sizes or 
add RAM and then increase the cache sizes.

MITIGATION AND REMEDIATION
It’s a good idea to monitor error logs for cache errors. Useful keywords include: notice, error, exception, SVC-, 
XDMP-, & start. Over time, you may want to refine the keywords, but these may indicate that something is wrong.

Cache full errors may indicate a resource issue. Caches are shared by all concurrently running queries, so the 
occasional single cache full error indicates that a query retried and succeeded. It doesn’t require any immediate 
action but it is an indicator that capacity limits may be approaching and so some capacity planning is in order. 
Frequent cache full errors do indicate a serious problem and may be significantly impacting the performance of a 
cluster, so frequent errors should be treated as an urgent issue.

EXPANDED TREE CACHE FULL ERRORS (XDMP-EXPNTREECACHEFULL)
The error message XDMP-EXPNTREECACHEFULL: Expanded tree cache full means that MarkLogic has run 
out of room in the expanded tree cache during query evaluation, and that consequently it cannot continue evaluating 
the complete query.

Possible solutions:

• Change the problem query so that it does not need to use as much data. For instance, return only 100 results 
instead of 500

• Tune the problem query so that it does not need to simultaneously cache as much content. An example: you 
might be returning 500 complete documents when all you really want is the value of a single element in each 
document. Better usage of the indexes and queries can help here

• Alternatively, if there is not sufficient memory to increase total cache size, you can increase the size of the cache 
partitions by decreasing the number of partitions. More partitions allow more concurrency, but make each 
individual cache partition smaller, which could make it more likely for the cache to fill up
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LIST CACHE FULL ERRORS (XDMP-LISTCACHEFULL)
MarkLogic Server uses its List Cache to hold search term lists in-memory. This error occurs when a query fails due 
to the size of the search term lists exceeding the allocated List Cache.

Very occasional instances of XDMP-LISTCACHEFULL, especially during periods of high concurrency, are 
not generally critical problems since queries that fail will retry and succeed. Frequent instances of XDMP-
LISTCACHEFULL indicate an unhealthy system, where some combination of queries is failing frequently, and 
remedial action should be taken to either resize the cache or tune queries. 

Possible Solutions:

• Increase cache size. If memory is available on a host, increasing the cache size may be a good option.
• Add hosts. This would increase overall cache size by adding per-host memory.
• Simplify data model to reduce the size of termlists.
• Reduce the number of List Cache partitions, as long as doing so would increase the size of each partition. 

Note that this may reduce concurrency and shouldn’t be the first action.

RESOURCE CONSUMPTION SUMMARY FOR QUERIES

System Resource Impact

Storage N/A

I/O throughput Filtered searches can result in very high I/O utilization because the E-nodes will 
need to open each document and inspect for matches. If the caches are not 
efficiently used, you will also see high I/O utilization on D-nodes.

CPU CPU will be used on E-nodes to execute server-side code (XSLT, JavaScript 
and/or XQuery). D-nodes will also have some CPU utilization – in particular, 
positions processing (near queries) has significant CPU impact.

Memory Memory will be allocated dynamically for caches – so all cache sizes will impact 
overall memory. As documents are fetched from disk and loaded into caches, 
memory utilization will increase.

Network Depending upon the size of the cluster, network traffic can be substantial (in 
the case of 50 or greater hosts) or small (1-3 hosts). Query workload can also 
impact network – if queries are requesting large numbers of documents, this can 
impact network. Network should be monitored; if network throughput becomes 
a bottleneck, a 10Gig E can alleviate network concerns.

PART IV: OPERATIONAL CONCERNS
There are a number of operational concerns that don’t fit neatly into the “ingest or query” model. Database backups, 
intracluster communication and topology decisions are some examples. This section addresses operational 
concerns and makes recommendations based upon best practices.

OPTIMAL NUMBER OF FORESTS
Forests are a unit of concurrency in MarkLogic Server: more forests means more concurrent writes and reads. 
However, at some point, concurrency benefits will plateau.
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There are also many different factors at play when determining the optimal number of forests for an application:

• How large are the documents?
• How many documents are there?
• What is the query and update frequency?
• How many concurrent users are expected?
• What are the query response time and throughput requirements?
• Is tiered storage in place and do you need to align forests with partitions?
• How many forests are optimal from a manageability perspective?

We always recommend using more than one forest. Beyond that, it makes sense to decide on number of forests 
depending upon the factors listed above. For example, if response times need to meet a certain SLA and the 
application uses large numbers of facets, the number of documents in a forest should be kept on the smaller side, 
and therefore more forests may be needed.

TOPOLOGY DECISIONS: E-NODES AND D-NODES IN A CLUSTER
E-nodes communicate with D-nodes to retrieve data. If a request does not need any forest data to complete, then 
an E-node request is evaluated entirely on the E-node. If the request needs forest data (for example, a document 
in a database), then it communicates with one or more D-nodes to service the forest data. Once it gets the content 
back from the D-node, the E-node finishes processing the request (performs the filter portion of query processing) 
and sends the results to the application.

In single host configurations, a single host carries out both E-node and D-node activities. In a cluster, it is also 
possible for some or all of the hosts to have shared E-node and D-node duties. 

E-nodes and D-nodes run exactly the same MarkLogic software – the separation is logical and functional. For an 
E-node, configure the host with application servers, but no forests. For a D-node, configure with forests, but no 
application servers.

WHEN TO SEPARATE
Separating nodes into D- and E-nodes provides clear workload isolation. However, either shared E/D nodes or 
separated D- and E-nodes are valid configurations. In general, separating E- and D-nodes in larger scale clusters 
remains an easier way to monitor resource consumption and understand bottlenecks, but many successful 
MarkLogic customers run in production with large-scale (greater than 100) nodes using a combined E/D approach. 

There are some clear cases where separation or combined E/D make sense.

ANALYTIC APPLICATIONS/SEMANTICS
For analytic applications where workload isolation is required, use separate E- and D-nodes. Semantics applications 
using SPARQL or MarkLogic built-ins to do semantic queries should be considered analytic applications; semantics 
applications should use separate E- and D-nodes. Semantics E-nodes need a significant amount of memory to 
execute in-memory joins – a minimum of 64 GB of RAM is recommended for E-nodes in semantics applications.

MORE DATA, FEWER REQUESTS
Some applications have a great deal of data but very small numbers of concurrent requests. In this case, it makes 
sense to separate nodes and allocate many more nodes as D-nodes. 

LESS DATA, MORE REQUESTS
Other applications might have a small amount of data but large numbers of concurrent requests. In this case, 
separating into E- and D-nodes makes sense, with more hosts allocated for E-nodes.
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ARBITRARY QUERIES
Another use case for splitting nodes is an application that runs arbitrary queries (either via Query Console or via the 
application API). This can cause significant E-node utilization and so it might make sense in this case to separate E- 
and D-nodes.

THE GRAY AREA
For applications where these scenarios don’t apply, understanding the pros and cons of each approach is important. 
In general, once a cluster has reached about 16 nodes, it makes sense to start separating E- and D- nodes, unless 
there is a compelling reason (financial, logical, functional) not to. Again, both types of configurations are valid. This is 
an enterprise infrastructure decision: given your particular resources, which configuration makes sense?

BEYOND “QUERY EVALUATION” OR “DATA SERVICES”
Understanding the workload managed by each type of node can also be part of the decision to split or run with 
combined E/D nodes.

FUNCTIONS IMPACTING E-NODE WORKLOAD
Snippets. Snippeting code needs to run on the E-nodes and can have significant impact on memory and CPU. To 
create a snippet, the entire document is read into memory and then parsed to look for similar terms. 

Server-side XQuery or JavaScript code that does NOT involve database calls. All server-side code is evaluated on 
the E-node. In many cases, this code will need to manipulate data that has been returned or run reports. All of these 
functions consume CPU.

Filtering. For some applications, filtering search results is a requirement. The filtering step validates whether each 
candidate fragment result actually meets the search criteria. Unfiltered searches, therefore, are guaranteed to be 
fast, while filtered searches are guaranteed to be accurate. By default, searches are filtered; you must specify the 
"unfiltered" option to cts:search to return an unfiltered search. If a search is filtered, the E-node will expand the 
results from disk if the document is not already in cache, and then find a match; filtering can therefore significantly 
increase I/O and CPU utilization.

Expanding tree data. When reading from the database, the E-node receives the compressed tree binary data. 
The E-node then expands the binary data into the Expanded Tree representation (either XML or JSON) which is 
eventually returned to the calling function.

Determining which forest to insert into. When data is loaded into MarkLogic Server, the E-node is in charge of 
determining what forest to load content into, based upon the database assignment policy. Note that this step is 
skipped if using mlcp  (MarkLogic Content Pump) with the fastload option.

Tokenization. When documents are loaded, the E-node breaks the document up into tokens.

Task Server. If using the Content Processing Framework (CPF), tasks run on the E-node task server.

Semantics joins and semantics aggregations (not cts:aggregate functions). All SPARQL join statements happen 
on the E-node.

SQL joins and aggregations.

FUNCTIONS IMPACTING D-NODE WORKLOAD
Data reads. When data is requested from the D-node, the data is loaded from disk into the Compressed Tree Cache 
(if not already there) and then sent to the E-node.

Data writes. The D-node is responsible for writing data to the local forest.
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Index resolution. The D-node is responsible for resolving searches against local indexes and returning results to the 
E-node. Queries against all indexes, including lexicons, happen here.

Rebalancing. All rebalancing work happens on the D-node. The E-node is not at all involved. This can increase CPU 
and I/O utilization.

Reindexing. When data is reindexed, the I/O, CPU, and memory required are all used on the D-node.

SEPARATE E- AND D-NODES: PROS
Workload isolation. E-nodes are stateless, so if a query consumes a lot of E-node resources (lots of filtering, co-
occurrence, complex code, etc.) then having it run on an E-node isolates that from other queries that need to access 
data that would otherwise be on that node.

Ability to leverage available machines/VMs that lack disk bandwidth

Ability to dedicate CPU resources to evaluation separately from data/ingest

If an E-node machine becomes unavailable for some reason (for example due to poorly performant ad-hoc 
queries), it won’t cause a failover or bring down the whole cluster (if failover isn’t enabled)

Separating E-nodes makes it quicker to unmount or restart forests, which can be important during state 
transitions like entering flash backup

SEPARATE E- AND D-NODES: CONS
Separation of concerns in a bad way: you can't use available E-node CPU or RAM to help on D-nodes or vice 
versa

Disk bandwidth now even more focused on D-nodes, which may reduce total disk bandwidth available depending 
on infrastructure

USING PERFORMANCE MONITORING TO UNDERSTAND CONSTRAINTS
Whether your implementation uses shared D/E nodes or separated D- and E-nodes, using the Monitoring Dashboard 
and Monitoring History can help you understand bottlenecks and what to do next.

Example: Low Disk Utilization, High CPU Utilization
In this example, the disks are moderately utilized under load (ingest and query), but the CPU is at 75% utilized.

It’s likely that CPU resources will be exhausted in the near future, since you plan to roll the application out to 
additional users.

Remediation:
• Tune code. Is there a way to make better use of MarkLogic caches and reduce E-node operations?
• Add E-nodes/cores. Adding additional capacity should alleviate the overall CPU bottleneck 

 - If the configuration uses combined E/D nodes, this particular problem will leave disk cycles unused

Example: High Disk Utilization, Low CPU Utilization
In this example, the disks are maxed out under load (ingest and query), but the CPU is quite low. 

Customers are complaining about slow response times and you’re missing your SLAs.
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Remediation:
• Improve underlying storage

 -  May require deep dive into storage infrastructure, RAID controllers, SAN config

• Add hosts. More storage may be the best solution here; if using local disk forests, you will need to add more 
hosts to increase storage. Note that this would also suggest the need for an E/D separation – you’d want to 
have separate D-nodes to use all available resources for data or you’ll be adding CPU resources that you don’t 
need.

SUMMARY
Overall, there may be important reasons to use shared E/D nodes, but as your cluster grows, using separate E- and 
D-nodes will make diagnosing problems and cluster management somewhat easier.

FULL AND INCREMENTAL BACKUPS
Full backup/restore operations are I/O intensive and should be scheduled during off-hours, when possible. Backup 
is a background operation and can be throttled. Backup I/O competes with background Merge I/O for throughput 
and cannot be prioritized except through scheduling backups and merge blackouts. 

The backup/restore operations with journal archiving enabled provide a point-in-time recovery option that enables 
you to restore database changes to a specific point in time between full backups with the input of a wall clock time. 
When journal archiving is enabled, journal frames are written to backup directories by near synchronously streaming 
frames from the current active journal of each forest. 

When journal archiving is enabled, you will experience longer restore times and slightly increased system load as a 
result of the streaming of journal frames. 
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Figure 11: Journal Archiving
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Journal archiving can only be enabled at the time of a full backup. If you restore a backup and want to re-enable 
journal archiving, you must perform a full backup at that time.

When journal archiving is enabled, you can set a lag limit value that specifies the amount of time (in seconds) in 
which frames being written to the forest's journal can differ from the frames being streamed to the backup journal. 
For example, if the lag limit is set to 30 seconds, the archived journal can lag behind a maximum of 30 seconds 
worth of transactions compared to the active journal. If the lag limit is exceeded, transactions are throttled until the 
backup journal has caught up.

The active and backup journal are synchronized at least every 30 seconds. If the lag limit is less than 30 
seconds, synchronization will be performed at least once in that period. If the lag limit is greater than 30 seconds, 
synchronization will be performed at least once every 30 seconds. The default lag limit is 15 seconds.

The decision on setting a lag limit time is determined by your Recovery Point Objective (RPO), which is the amount 
of data you can afford to lose in the event of a disaster. A low RPO means that you will restore the most data at the 
cost of performance, whereas a higher RPO means that you will potentially restore less data with the benefit of less 
impact to performance. In general, the lag limit you choose depends on the following factors:

A lower lag limit implies:

• Accurate synchronization between active and backup journals at the potential cost of system performance
• Use when you have an archive location with high I/O bandwidth and your RPO objective is low

A higher lag limit implies:

• Delayed synchronization between active and backup journals, but lesser impact on system performance
• Higher server memory utilization due to pending frames being held in-memory
• Use when you have an archive location with low I/O bandwidth and your RPO objective is high

UNDERSTANDING REINDEXING AND REBALANCING
REINDEXING
Indexing in MarkLogic is usually accomplished when loading a document. However, if you wish to change the index 
settings after you’ve already ingested content, you’ll need to reindex the existing documents if you wish them to 
pick up the new index settings. When adding a new index, the server runs an estimate of all the fragments that 
match and then proceeds to reload those URIs that match.

As a result, indexing/reindexing can be a very CPU and disk-I/O intensive operation that creates a lot of new 
documents, which then need to be merged. If the system doesn’t have adequate I/O throughput capacity, all of this 
activity can hurt query performance.

For range indexes, range queries cannot execute at all until reindexing is complete; in this case, if the new index is 
needed faster, then the reindexing process should be given priority.

MITIGATING REINDEXING IMPACT
There are several steps that can be taken to mitigate reindexing impact. These steps are ordered; it makes the most 
sense to first lower priority and throttle. If that isn’t sufficient, then scheduling during slower times may be better.

CONFIGURE THROTTLE AND BACKGROUND I/O
Reindexing can lead to heavy merge activity and may lead to disk bottlenecks if not managed carefully. To reduce 
the impact of merges on queries, you should consider throttling the reindexer in order to keep the I/O to a minimum. 
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For example, use the following settings:

• reindexer-throttle = 3

Make sure to leave the large-size-threshold at default or larger to prevent binary documents from being indexed.

You can also adjust the following group settings to help limit I/O:

• background-io-limit = 100

This will limit the background I/O for that group to 100 MB/host. This is a good starting point, and may be increased 
if you find that your merges are progressing too slowly. If you are I/O limited, make sure to set both the reindexer-
throttle and background I/O to balance priorities between reindexing and merges.

SCHEDULE DURING SLOWER TIMES
For non-urgent index changes, it may make sense to schedule reindexing during a time when your cluster is not 
busy. For a production system, when new range indexes might be needed to support application changes, this 
would not be a good practice and reindexing should be given priority. But for non-urgent production changes, it may 
make sense to work through a gradual reindexing process. For instance::

• Change your index configuration on a Friday night
• Let it run for most of the weekend
• Set the reindexer-enable field to 'false' for the database being reindexed
• Be sure to do the previous step a few hours before your cluster begins to see heavy usage. This will allow the 

merging to complete in a timely fashion
• If need be, reindexing can continue over the next weekend and so on. The reindexer process is able to pick up 

where it left off before it was disabled

AVOID UNUSED RANGE INDEXES, FIELDS, AND PATH INDEXES
In addition to taking up extra disk space, the above indexes require extra work when it's time to reindex. This is 
especially true for Field and Path indexes, which may require extra loading passes. 

REBALANCING
Rebalancing does not run as background I/O. It uses the assignment policy for the database to decide where to 
place documents, and all operations happen on the D-node. Note that this is similar to ingestion – so documents are 
inserted, marked for deletion, and stands are merged. This can have a significant impact on disk and CPU. 

Using the rebalance throttle and enabling rebalancing at times when the cluster is not busy can mitigate  
rebalancing impact.

SUMMARY
Backups, reindexing and rebalancing all use significant resources, particularly CPU and I/O. Plan for these activities 
carefully and use tools available to throttle to reduce impact on your live query traffic.

MEMORY UTILIZATION IN MARKLOGIC SERVER
There are a number of components and data structures that use memory in MarkLogic:

3 1



Range Indexes and Lexicons. These are memory mapped and are loaded either at forest mount time (preload 
mapped data) or dynamically as needed.

Caches. Memory for MarkLogic caches is allocated at start time. 

In-memory stand. The in-memory stand and associated in-memory structures is allocated as needed when 
documents are ingested. When the stand is flushed to disk, memory is released.

Queries – semantic joins. SPARQL queries use in-memory joins to execute.

MARKLOGIC AND HUGE PAGES
MarkLogic uses Huge Pages to optimize memory utilization. MarkLogic will try to utilize Huge Pages in some cases 
where it needs to allocate large blocks of memory, such as allocating memory for the group level caches and in-
memory stands. 

In addition to this, MarkLogic will also try to use Huge Pages for range index tables for inversions. It can also 
allocate Huge Pages for large termlist and fragment read buffers. 

All range indexes map values to corresponding fragment ids; the range index inversion performs the inverse 
mapping (mapping fragment ids to values). When MarkLogic first needs to map a fragment id to a value, it generates 
this inversion table from the mapped range index files. Once this table is created, it is held in-memory until the 
corresponding stand is closed -- so the upfront cost of this work is offset through reuse. 

Note that queries that make use of Huge Pages may not be the same queries that are utilizing a large amount of 
anonymous memory; many queries will run through without allocating any Huge Pages and instead will rely on 
allocating large numbers of small blocks of memory. 

MarkLogic will never fail if it is unable to allocate Huge Pages; anonymous pages will always be allocated in this 
situation and this is why MarkLogic recommends using either of the two values output by MarkLogic when the node 
first starts up. 

CONFIGURING HUGE PAGES
When MarkLogic starts up, the server logs a suggested low and high range for Huge Pages:

ErrorLog_1.txt:2015-06-16 11:36:44.949 Info: Linux Huge Pages: detected 0, recommend 

9760 to 10816

The low number is the sum of all cache sizes. The high number also includes in-memory settings for forests. If forest 
configuration settings change, this can cause changes to the recommended Huge Pages.

This KnowledgeBase article explains how to configure Huge Pages. Be especially careful to DISABLE Transparent 
Huge Pages and use Huge Pages instead.

RedHat Enterprise Linux, CentOS, and Suse Linux provide support for Huge Pages. Amazon Linux, Windows Server 
and MacOS do not provide any support for Huge Pages.

TIERED STORAGE
MarkLogic Server allows you to manage your data at different tiers of storage and computation environments, with 
the top-most tier providing the fastest access to your most critical data and the lowest tier providing the slowest 
access to your least critical data. Infrastructures such as Hadoop and public clouds make it economically feasible 
to scale storage to accommodate massive amounts of data in the lower tiers. Segregating data among different 
storage tiers allows you to optimize trade-offs among cost, performance, availability, and flexibility.
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Figure 12: Tiered Storage 

In the example above, the data has been organized into four categories: fast, active, historical and archived. 
Depending upon the importance of the data (as defined by application requirements), the data is partitioned into 
one of these categories. Each category has its own hardware, corresponding to how quickly queries need to return. 
“Importance” in this context depends upon application requirements; for example, an application that mines social 
media will consider content freshness to be most important, whereas a different application might consider most 
frequently accessed content to be the most important.

HIGH AVAILABILITY
LOCAL-DISK FAILOVER
Local-disk failover creates one or more replica forests for each failover forest. The replicas contain the exact same 
data as the primary forest, and are kept up to date transactionally as updates to the forest occur. Each replica forest 
should be on a different host from the primary forest so that, in the event the host for the primary forest goes down, 
another host with a copy of the primary forest's data can take over.

Each forest has its own host, and each host has disk space allocated for the forest. The primary forest is the forest 
that is attached to the database. Any replica forests configured for the primary forest have their own local disk. As 
updates happen to the database, the primary forest is updated as well as each configured replica forest.

In the event that Host1 goes down or an I/O error occurs on the F1 forest, the MarkLogic Server cluster will wait 
until the specified timeout and then it will automatically remove the F1 forest from the cluster. Because all of the 
forests in a database must be available for queries to run, the database is unavailable at this time. At this point, the 
system fails over the forest to the first available replica forest, and the Replica1 forest is automatically attached to 
the database. The database once again becomes available. If the failed forest comes back online, it will resume as a 
replica. 

While each replica forest maintains all of the committed documents that are in the primary forest, it is not an exact 
byte-for-byte copy of the forest. It is a forest in its own right, and will merge when it needs to merge, which might 
not be at the same times that the primary forest merges. So assuming the replica forest is replicating normally (sync 
replicating, as described in Forest Mount States), it will contain the same committed documents as the primary 
forest. The host that services each replica forest must meet the needed disk space requirements and be sized 
appropriately so that merges can occur as needed on the forest.

Remember that memory utilization on the D-node might vary greatly after a failover and you should size accordingly. 
For example, if preload is turned off for range indexes, a host that properly served 6 primary forests and 6 failover 
forests could find itself with inadequate memory when it’s serving 9 primary forests and 3 failover forests after 
a node failure. Likewise, those failover forests might not have impacted cache utilization on that host before the 
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failover but once active, are consuming cache resources. When load testing, testing during failover is  
recommended also. 

SHARED-DISK FAILOVER
Shared-disk failover uses a clustered filesystem to store the forest data. The clustered filesystem must be available 
with the same path on each host that is configured as a failover host. In the event of a host that is assigned a 
shared-disk failover forest going down, another host can take over the assignment of that forest.

After the cluster has determined that a host is down and disconnected it from the cluster, if failover is enabled 
and configured for that forest, then one of the failover hosts will attempt to mount the forest locally. The host that 
attempts to mount the forest is determined based on the list of failover hosts in the forest configuration, and the host 
that is highest on the list will be the first to attempt to mount the forest. If that host is not available, then the next one 
in the list will attempt to mount the forest, and so on until the forest is either mounted or there are no failover hosts 
available. After the forest is mounted locally, the other hosts in the cluster will mount it remotely. 

If the forest on Host2 comes back online, it will automatically connect to the cluster. However, Host1 will continue 
to host the primary forest until the forest is restarted. This avoids having the forest 'ping pong' between hosts in the 
event that the primary host has a recurring problem that takes some time to solve. 

In local disk failover, each copy of the forest has its own in-memory and on-disk stands. In shared-disk failover, the 
in-memory stand is not available to the failover host after the primary host has failed. In order to populate the in-
memory forest, the journal has to playback from the time of the last complete in-memory stand write.

CHOOSING BETWEEN LOCAL-DISK AND SHARED-DISK FAILOVER FOR HA

ADVANTAGES OF LOCAL-DISK FAILOVER
• Typically higher performance throughput at lower cost
• Typically fewer points of failure
• More rapid failover

DISADVANTAGES OF LOCAL-DISK FAILOVER
• Increased disk usage
• More forests to manage (2X)
• Additional CPU capacity and memory to update and merge the forest, even when the forest is not failed over

ADVANTAGES OF SHARED-DISK FAILOVER
• There is only a single filesystem to manage 
• It takes advantage of the high-availability features of a clustered filesystem.
• Can be used with forest data directories mounted with Network File System (NFS)

DISADVANTAGES OF SHARED-DISK FAILOVER
• Typically slower performance for everyday usage and failover
• Typically more complex to configure and monitor
• Typically more expensive than local disk to acquire and manage
• Shared disk failover does not keep multiple copies of the forest on different filesystems (although clustered 

filesystems tend to have redundancy built in). This means failover will only work if the host that has the forest 
mounted locally fails or if the XDQP communication between the host and disk is interrupted. Unlike local-disk 
failover, if the shared forest fails due to a disk failure, there is no backup forest

• Forests that are configured for shared-disk failover always perform their updates using strict journaling mode, 
which explicitly performs a file synchronization after each commit. While strict journaling is safer because it 
protects against the computer unexpectedly going down and not just against MarkLogic Server unexpectedly 
going down, it makes updates slower
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CLUSTERS AND NETWORK COMMUNICATION
As the number of hosts in a cluster grows, network communications become more important in understanding 
resource consumption patterns. This section describes network communication.

COMMUNICATION BETWEEN HOSTS 
A cluster is a group of hosts running MarkLogic Server; a cluster is configured at installation time. Each host in a 
cluster communicates with all of the other hosts in the cluster at periodic intervals. This periodic communication, 
known as a heartbeat, circulates key information about host status and availability between the hosts in a cluster. 
Through this mechanism, the cluster determines which hosts are available and communicates configuration changes 
with other hosts in the cluster. If a host goes down for some reason, it stops sending heartbeats to the other hosts in 
the cluster.

If a host stops sending heartbeats, the other hosts in the cluster decide whether to vote the non-responsive host 
out of the cluster. To vote a host out of the cluster, there must be a quorum of hosts voting to evict a host. A quorum 
occurs when more than 50% of the total number of configured hosts in the cluster (including any hosts that are 
down) vote the same way. Therefore, you need at least 3 hosts in the cluster to reach a quorum. 

The voting that each host performs is done based on how long it has been since it last had a heartbeat from the 
other host. If more than half of the hosts in the cluster determine that a host is down, then that host is disconnected 
from the cluster. If failover is configured, the replica forests for that host then take over so that availability is 
maintained. 

Each host in the cluster continues listening for the heartbeat from the disconnected host to see if it has come back 
up, and if a quorum of nodes in the cluster is getting heartbeats from the node, then it automatically rejoins  
the cluster.

The heartbeat mechanism enables the cluster to recover gracefully from things like hardware failures or other events 
that might make a host unresponsive. This occurs automatically; hosts can go down and automatically come back 
up without requiring intervention from an administrator (although failback does require manual intervention). If the 
host that goes down stores content in a forest, then the database to which that forest belongs goes offline until 
the forest either comes back up or is detached from the database. If you have failover enabled and configured for 
that forest, it attempts to fail over the forest to a secondary host (that is, one of the secondary hosts will attempt to 
mount the forest). Once that occurs, the database will come back online. 

COMMUNICATION BETWEEN CLUSTERS
While local-disk failover replication happens within a cluster, replication of data to a completely separate cluster 
for disaster recovery purposes (called Database Replication) uses inter-cluster communication. Communication 
between clusters uses the XDQP protocol. Before you can configure database replication, each cluster in the 
replication scheme must be aware of the configuration of the other clusters. This is accomplished by coupling the 
local cluster to the foreign cluster. For more information, see the Database Replication Guide.

TUNING APPLICATION SERVER THREADS AND BACKLOG
MarkLogic Application Servers have several parameters that can be tuned to improve performance. These settings 
are specific to the E-node and control the HTTP or XDBC requests handled by the server.

• Threads: specifies maximum number of Application Server threads
• Backlog: specifies the maximum number of pending connections on the HTTP server socket

Although the defaults are a good starting point, different applications may need different settings depending upon 
whether E- and D-nodes are separated and whether additional E-node resources are available on the host.
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To tune these settings, first run a performance test with the defaults and measure the response time and throughput. 
Then, increase the number of threads. When the number of threads is low, the server should be able to provide 
the fastest response time. When the number of threads is increased, the response time for individual requests may 
increase, but the throughput should increase as well.  

Using the Monitoring History, observe available system resources (CPU, memory, disk bandwidth). As the number 
of threads is increased, usage of system resources should increase; the goal is to find the ideal number of threads 
before system resources are exhausted.

Increasing the backlog is a way to queue requests without incurring significant additional resource cost. Adjusting 
the backlog may provide response times that are equivalent (or better) than what users experience with a high 
thread count. 

The backlog should be chosen to queue about one second of connection requests, or roughly the number of 
requests per second expected on that App Server.

SWAP RECOMMENDATIONS
We strongly recommend configuring swap space on Linux as a conservative measure against memory exhaustion. If 
the MarkLogic process uses all available memory, the OS will use swap space as a temporary memory store. Once 
this happens, things will get slow – very slow. Having swap space will allow you to degrade over time instead of just 
crashing when the OS can’t allocate more memory. 

If your hardware has less than 32 GB RAM, then use 1x available RAM for swap. If your hardware has more than 32 
GB RAM, use 32 GB RAM. 

Note that swapping is a critical error condition – if the host begins swapping, MarkLogic performance will severely 
degrade. Swap activity is a symptom of a problem – not having enough memory. You may need to increase the RAM 
on each host, or to increase the number of hosts to support your memory requirements.

CONCLUSION
This paper provides an initial look at resource consumption for MarkLogic Server. Because characteristics can vary 
greatly between applications, it is important to understand what MarkLogic does and how it consumes resources 
in order to properly estimate and plan. This whitepaper covered ingestion, tokenization and indexing, queries, and 
operational concerns with the goal of providing an overview of MarkLogic resource consumption.
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ADDITIONAL READING
• Monitoring MarkLogic Server
• Query Performance and Tuning Guide
• Scalability, Availability, and Failover Guide
• Inside MarkLogic Server

All representations of system configuration, storage capacity, query latency or other performance data in 
the sizing communications are estimates and averages based on certain assumptions and conditions.  No 
representation is made that these throughputs, capacities, response times or other performance data will be 
accurate or achieved in any given deployment of MarkLogic® software: Customer results will vary depending 
a variety of factors .  Any configuration recommended by the sizing information communication should be 
tested and verified by Customer subsequent to tuning the final production code and queries.
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